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To my dad, my best friend who always wanted to write a book. 





Introduction to the Series 
 
Since its inception in 1989, the Tutorial Texts (TT) series has grown to cover 
many diverse fields of science and engineering. The initial idea for the series was 
to make material presented in SPIE short courses available to those who could 
not attend and to provide a reference text for those who could. Thus, many of the 
texts in this series are generated by augmenting course notes with descriptive text 
that further illuminates the subject. In this way, the TT becomes an excellent 
stand-alone reference that finds a much wider audience than only short course 
attendees. 

Tutorial Texts have grown in popularity and in the scope of material covered 
since 1989. They no longer necessarily stem from short courses; rather, they are 
often generated independently by experts in the field. They are popular because 
they provide a ready reference to those wishing to learn about emerging 
technologies or the latest information within their field. The topics within the 
series have grown from the initial areas of geometrical optics, optical detectors, 
and image processing to include the emerging fields of nanotechnology, 
biomedical optics, fiber optics, and laser technologies. Authors contributing to 
the TT series are instructed to provide introductory material so that those new to 
the field may use the book as a starting point to get a basic grasp of the material. 
It is hoped that some readers may develop sufficient interest to take a short 
course by the author or pursue further research in more advanced books to delve 
deeper into the subject. 

The books in this series are distinguished from other technical monographs 
and textbooks in the way in which the material is presented. In keeping with the 
tutorial nature of the series, there is an emphasis on the use of graphical and 
illustrative material to better elucidate basic and advanced concepts. There is also 
heavy use of tabular reference data and numerous examples to further explain the 
concepts presented. The publishing time for the books is kept to a minimum so 
that the books will be as timely and up-to-date as possible. Furthermore, these 
introductory books are competitively priced compared to more traditional books 
on the same subject.  

When a proposal for a text is received, each proposal is evaluated to 
determine the relevance of the proposed topic. This initial reviewing process has 
been very helpful to authors in identifying, early in the writing process, the need 
for additional material or other changes in approach that would serve to 
strengthen the text. Once a manuscript is completed, it is peer reviewed to ensure 
that chapters communicate accurately the essential ingredients of the science and 
technologies under discussion.  

It is my goal to maintain the style and quality of books in the series and to 
further expand the topic areas to include new emerging fields as they become of 
interest to our reading audience. 
 

James A. Harrington 
Rutgers University 
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Preface 
 
 
This book began as a collection of notes and computer examples prepared for a 
first-year graduate course on Fourier optics. In teaching Fourier optics over a 
number of years, I found that I developed a better conceptual understanding of 
the analytic material after setting up examples for the class on the computer. The 
examples required careful consideration of the sample coordinates, amplitude 
scaling, practical dimensions, display settings, sampling conditions, and a 
number of other issues. It wasn’t long before I started designing computer 
exercises for the students to do—figuring that if it helped me, it would probably 
help them. In addition, applying the theory to produce a display of a beam pattern 
or a blurry image of some object seemed to bring the application of Fourier 
optics to life for many students. 

At the same time, the research being performed by my group at New Mexico 
State University involved wave optics simulation of laser beam propagation 
through atmospheric turbulence. The synergy of the teaching and research 
activities led to the idea of a book on computer methods and Fourier optics. I did 
some research and found a scattering of material on numerical Fourier optics, but 
no book with the content I envisioned. So with that, the project began. 

Computational Fourier Optics is a text that shows the reader in a tutorial 
form how to implement Fourier optical theory and analytic methods on the 
computer. A primary objective is to give students of Fourier optics the capability 
of programming their own basic wave optic beam propagations and imaging 
simulations. The book will also be of interest to professional engineers and 
physicists learning Fourier optics simulation techniques—either as a self-study 
text or a text for a short course. For more advanced study, the latter chapters and 
appendices provide methods and examples for modeling beams and pupil 
functions with more complicated structure, aberrations, and partial coherence. 

For a student in a course on Fourier optics, I envision this book as a 
companion to any of several excellent textbooks on Fourier optical theory. I felt a 
companion book should be concise, accessible, and practical—so those are also 
goals for this text.  

The book begins in Chapter 1 with a short review of the Fourier optical 
results that are central to wave optics simulation development. The review is 
intended to be a quick, consolidated reference. 

In Chapter 2 the discrete Fourier transform (DFT) is developed, of which the 
fast Fourier transform (FFT) version is a primary tool for simulations. FFT 
scaling aspects, index formatting, and other differences from the analytic 
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transform are introduced. These differences later come to play in the scaling and 
interpretation of the simulation results. 

The hands-on tutorial part of the book begins in Chapter 3 where step-by-
step examples are presented that involve programming functions, vectors, 
equations, and taking transforms in MATLAB®. Students with a range of 
backgrounds—electrical engineers, astronomers, physicists—take my Fourier 
optics course. The non-engineers often have never used MATLAB, so the idea of 
combining a MATLAB tutorial with a computational Fourier optics tutorial was 
natural and led to Chapter 3. The MATLAB programming environment is 
optimized for vector and matrix operations; therefore, it is a good tool for Fourier 
optics simulation, which generally involves at least two dimensions. 
Furthermore, MATLAB has a heritage in this subject since several optical 
propagation codes, such as the AOTools and WaveProp toolboxes, are written in 
MATLAB. The material in this chapter has been tested by students in my Fourier 
optics course, and even those without any MATLAB experience have found they 
could get up and going quickly with the tutorial. 

Chapter 4 is a quick review and summary of scalar diffraction and optical 
propagation theory. The expressions presented in Chapter 4 are taken into the 
computer domain in Chapter 5. Implementations of the Fresnel and Fraunhofer 
diffraction expressions are described with step-by-step coding instructions. The 
methods are demonstrated for an illuminated aperture. Attention is paid to 
sampling issues that can be the bane of wave optics propagation simulations. 

Chapter 6 covers techniques that add further application to the diffraction 
simulations. Methods are described for applying tilt and focus to an optical 
wavefront, and lenses and diffraction gratings are considered. 

A review of coherent and incoherent imaging theory and modeling 
techniques applied to diffraction-limited imaging examples are presented in 
Chapter 7. Imaging simulation is extended in Chapter 8 to the more practical 
circumstance involving wavefront aberrations. 

Chapter 9 provides a short review of coherence theory and demonstrates 
approaches for simulating partial temporal and partial spatial coherent 
illumination. 

Exercises at the end of each chapter (with answers in the back of the book) 
give the reader a chance to work with both theory and computer 
implementations. 

The appendices cover: (a) further sampling details for Fresnel diffraction; (b) 
a two-step diffraction propagation technique that allows arbitrary grid scaling 
between the source and observation planes; (c) listings of basic MATLAB 
functions developed in the text; and (d) answers to the exercises. 

Please visit http://www.ece.nmsu.edu/~davvoelz/cfo/ for updates, errata, files 
and other resources. 

This book would have never happened were it not for a sabbatical leave in 
2008 in the Upper Peninsula of Michigan. I owe Mike Roggemann at Michigan 
Tech a big debt for all of his care and feeding of a displaced New Mexican. My 
discussions with him, on and off the lake, helped shape much of the content of 
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this book. I also thank the faculty and staff at Michigan Tech for all their support. 
Go Huskies! 

As this project was getting underway, Jason Schmidt kindly sent a first draft 
of his book Numerical Simulation of Optical Wave Propagation with Examples 
in MATLAB®. I tried to avoid studying it too closely as I wanted to put my own 
spin on related material. But I had to peek from time to time to see what he had 
to say on certain matters. His book was a valuable resource. 

Xifeng Xiao at New Mexico State University deserves credit for pioneering 
much of the partial coherence material. She also combed through all the chapters, 
working examples and checking equations. Our discussions over the years on 
numerical simulation are deeply imbedded in this book. It has been a great 
pleasure to work with her. 

The students of a succession of Fourier optics courses since 2003 at New 
Mexico State University have been, often unknowingly, a constant source of 
insight and inspiration for this book. Their reactions and feedback to the material 
helped change many things for the better and encouraged me to keep going. 

For all those spur-of-the-moment questions and sudden inquiries of how-
does-that-work, I thank my colleagues at the Klipsch School of ECE at New 
Mexico State University, especially Deva Borah, Laura Boucheron, Chuck 
Creusere, Philip DeLeon and Mike Giles - a good group of folks. 

Finally I cannot thank my wife, Judi, enough for supporting this project in 
every way, including proofreading the manuscript. Our children, Alex, Katie and 
Brian, have had to deal with an absent dad while I worked on this book, so I 
thank them for their patience. My family is my support and I couldn’t do what I 
do without them! 

 
 
 David Voelz 
 December 2010 
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Chapter 1 

Analytic Fourier Theory Review 

 

1.1 A Little History and Purpose 
 

The branch of optical science known today as “Fourier optics” had its genesis in 
the 1940s through the 1960s with the application of new telecommunications and 
circuit design analysis techniques in optical diffraction theory.1 In 1968 this 
upstart discipline was given a permanent foothold with the publication of 
Introduction to Fourier Optics, by Joseph W. Goodman, a seminal textbook that 
explained and united the fundamental concepts, and which continues to add 
significantly to the application of Fourier optics in subsequent editions.2 Fourier 
optics is now the cornerstone for the analysis of diffraction, coherence, and 
imaging, as well as specialized topics such as wavefront control, propagation 
through random media, and holography. 

The study of Fourier optics today leads naturally toward the computer for at 
least two reasons: (1) diffraction integral expressions are difficult to solve 
analytically for all but a few of the simplest aperture functions, and (2) the fast 
Fourier transform (FFT) algorithm combined with the linear systems framework 
of Fourier optics provides an extremely efficient computational approach for 
solving wave optics problems.  

Certainly, the computer can be applied directly in finding exceedingly 
accurate solutions to diffraction problems using numerical integration 
techniques.3 However, this book is really about the FFT and how to apply it to a 
variety of Fourier optics problems. The computer coding steps mirror the analytic 
concepts and the FFT’s speed makes it possible to perform thousands of optical 
propagation or imaging simulations in a reasonable amount of time. In fact, the 
methods explored in this book form the basis for wave (or physical) optics 
simulation tools that are widely used in industry. But, of course, there’s no free 
lunch (…if there were, perhaps we could be eating while studying Fourier 
optics...). It turns out the FFT is an accomplice to various numerical artifacts. We 
do our best in this book to expose these issues and provide constraints to help 
minimize the damage. 

This is also a tutorial text with step-by-step instructions, not only for coding 
Fourier optics problems, but also for MATLAB, our software application of 
choice. So, if you are new to MATLAB, don’t worry! Chapter 3 starts at the 
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beginning (“Open MATLAB”) and leads you through the basics of working with 
the FFT. By the end of the book you will be programming diffraction problems 
involving partially coherent light—at least that’s the goal! Exercises at the end of 
the chapters give you room to tinker with the programs and stretch out with your 
own code. 

It is assumed the reader has some familiarity with Fourier optics. Presenting 
the topic from the ground up is too much material to cover and would obscure 
our purpose. However, the analytic theory required is presented in summary form 
throughout the text. The notation and form closely follow Goodman’s 
presentation in Introduction to Fourier Optics.2 For further details and 
explanations of the analytic foundations of Fourier theory and Fourier optics the 
reader is encouraged to consult Goodman’s book as well as the many other 
excellent references that exist on the topic.4–7 

1.2 The Realm of Computational Fourier Optics 

In this book, the variables, vectors, and arrays in the computer code are defined 
as much as possible in terms of physical quantities. For example, the coordinates 
of samples in an array that models a spatial plane are defined in units of meters. 
Integers for indexing arrays show up only when they can’t be avoided. This 
approach allows a clear connection between the physical world being modeled 
and the computer code. MATLAB’s vectorized structure is also suited to this 
approach. Thus, programming examples presented in the book involve specific 
aperture sizes, wavelengths, and distances. Although some examples are simply 
academic, others are something one might encounter in the real world. However, 
the reader will soon notice an emergent theme: the finite size of the sample array 
in the computer limits the range of parameters that can be considered. 

We might consider this difficulty in light of the optical designer’s dilemma: 
When does one transition between a geometrical optics prediction of system 
performance and a wave optics prediction? The difference between these 
predictors is that geometrical optics assumes rectilinear (straight-line) 
propagation of the rays of light and ignores diffractive spreading due to the wave 
nature of light. The usual answer for the dilemma is that for small departures 
from perfection (near the “diffraction limit”) a wave optics description is needed. 
For large departures a geometrical ray optics description, which has more flexible 
implementation options, is adequate.8,9 

So, although analytic Fourier optics theory is quite general, the finite array 
size tends to limit the computer modeling to the “near-perfection” situations. 
Typically, this means small divergence angles for optical beam propagation, 
small simulated image area, and so forth. For practical applications, this is the 
same realm as the wave optics performance prediction for optical system design. 

The remainder of this chapter is a summary of the fundamental Fourier 
transform definitions, theorems, basic functions, and transform pairs. A review of 
linear systems theory is also included. So, let’s go! 
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1.3 Fourier Transform Definitions and Existence 

Fourier optics problems often involve two spatial dimensions. The analytic 
Fourier transform of a function g of two variables x and y is given by 
 

    , ( , )exp 2πX Y X YG f f g x y j f x f y dxdy




      , (1.1) 

 
where G(fX , fY) is the transform result and fX and fY are independent frequency 
variables associated with x and y, respectively. This operation is often described 
in a shorthand manner as   ),(),( YX ffGyxg  . Similarly, the analytic inverse 
Fourier transform is given by 
 

    , ( , )exp 2πX Y X Y X Yg x y G f f j f x f y df df




      . (1.2) 

 
The shorthand notation for this operation is   ).,(),(1 yxgffG YX 

 
For the Fourier transform to be realizable in a mathematical sense, g(x,y) 

must satisfy certain sufficient conditions. These conditions are commonly listed 
as: 

 (a) g must be absolutely integrable over the infinite range of x and y; 

 (b) g must have only a finite number of discontinuities; and 

 (c) g must have no infinite discontinuities. 

Goodman2 illustrates that in a number of important cases, one or more of these 
conditions can be weakened, and a generalized transform approach using 
idealized mathematical functions can be employed to find useful transform 
representations. Some generalized transform results of interest include 

  1 ( , )X Yf f  , 

    1 1
0 0 02 2cos 2π ( , ) ( , )X Y X Yf x f f f f f f      , 

where  is the Dirac delta function. 

1.4 Theorems and Separability 

The theorems listed in Table 1.1 find considerable application in Fourier 
analysis. In Table 1.1, A, B, a, and b are scalar constants. 

An important property of certain functions is separability. A two-
dimensional (2D) function is separable if it can be written as the product of two 
functions of a single variable, such as 
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      ygxgyxg YXS , . (1.3) 
 
Separability reduces the Fourier transform of a 2D function to the product of two 
one-dimensional (1D) transforms or  
 
         ygxgyxg YXS  , . (1.4) 

 
Table 1.1 Fourier transform theorems. 

 

Theorem Expression 

Linearity           yxhByxgAyxBhyxAg ,,,,   

Similarity  YX bfafGab
b

y

a

x
g ,, 















  

Shift      ( , ) , exp 2πX Y X Yg x a y b G f f j f a f b         

Parseval’s 
(Rayleigh’s)   YXYX dfdfffGdxdyyxg

22
),(),(  

Convolution  ( , ) ( , ) ( , ) ( , )X Y X Yg h x y d d G f f H f f          

Autocorrelation    2
( , ) ( , ) ( , )X Yg g x y d d G f f          

 2
( , ) ( , ) ( , )X Yg x y G G f f d d          

Cross-correlation  ( , ) ( , ) ( , ) ( , )X Y X Yg h x y d d G f f H f f         
      ddffHGyxhyxg YX ),(),(),(),(  

Fourier integral     ),(),(),( 11 yxgyxgyxg    

Successive 
transform 

  ),(),( yxgyxg   

Central ordinate    

 dxdyyxgGyxg

Y

X
f
f ),()0,0(),(

0
0  

   




YXYX

y
xYX dfdfffGgffG ),()0,0(),(

0
0

1  

Note: A, B, a, and b are scalar constants 
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1.5 Basic Functions and Transforms 

Several basic functions, or combinations thereof, are used to describe various 
physical or analytic structures encountered in optics, such as a circle function to 
describe a circular aperture. Thus, these functions and their Fourier transform 
pairs are of considerable utility. The definitions in Table 1.2 are adopted. 
 Functions of one variable are illustrated in Fig. 1.1. These can be combined 
as products to represent separable 2D functions. The circle function is a 
symmetric 2D function where a single radial variable r = (x2+y2)1/2 is often used. 
A shorthand name is not defined for the Gaussian, but this function appears 
often. The form we use is convenient for Fourier analysis. The circle and a 2D 
Gaussian function are plotted in Fig. 1.2 for illustration. 
 

Table 1.2 Basic functions. 
 

Function Definition 

Rectangle 

1
1,

2
1 1

rect( ) ,
2 2
0, otherwise

x

x x

 

 




 

Sinc 
sin(π )

sinc( )
π

x
x

x
  

Triangle 
1 , 1,

( )
0, otherwise.

x x
x

    


 

Comb 





n

nxx )()(comb   

Gaussian  2exp πx  

Circle  

2 2

2 2 2 2

1
1 ,

2
1 1

circ ,
2 2
0 otherwise.

x y

x y x y

  

   



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Figure 1.1 Basic 1D functions. 
 

 
 

Figure 1.2 Examples of 2D functions. 
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If optical structures and apertures are modeled with basic functions, then 
corresponding Fourier transforms can aid in finding diffraction solutions or 
image results. The basic functions and their Fourier transforms are presented in 
Table 1.3. J1 is a Bessel function of the first kind, order 1, and appears in the 
transform of the circle function. The transform of the circle is illustrated in Fig. 
1.3. In Table 1.3, the last row gives a pair of “chirp” functions that will become 
quite familiar in the following chapters. 

1.6 Linear and Space-Invariant Systems 

The power of Fourier methods to analyze the response of a physical system to an 
input is significantly enhanced if the system can be modeled as linear and shift- 
(or space-) invariant. There are many aspects of optical systems that can be 
modeled in this way. In general, the operation of a system on a two-variable input  
 

Table 1.3 Basic functions and their transforms. 
 

Function Transform 









a

x
rect   Xafa sinc  









a

x
sinc   Xafa rect  









a

x
  Xafa 2sinc  









a

x
comb   Xafa comb  

2

2
exp π

x

a

 
 
 

  2 2exp π Xa a f  













 
a

yx 22

circ  
 2 2

1
2

2 2

2π X Y

X Y

J a f f
a

a f f




 

2 2

2 2
exp π

x y

a b

  
   

  
  2 2 2 2exp π X Yab a f b f     

2 2

2 2
exp π

x y
j

a b

  
   

  
  2 2 2 2exp π X Yj ab j a f b f     

 Note: J1 is a Bessel function of the first kind, order 1. 
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                            2 2 2 2
1 2π /X Y X YJ f f f f   

 
 

Figure 1.3 Circle function transform; peak value at fX = 0, fY = 0 is . 
 
function g1 to produce an output function g2 can be described by 
 
     111222 ,, yxgSyxg  , (1.5) 
 
where S indicates the operation performed by the system. The “test” for linearity 
is the following: 
 
        ),(,),(, 11111111 yxgSByxgASyxBgyxAgS BABA  , (1.6) 
 
where A and B are scalar constants. For a sum of input functions—for example, 
gA and gB in Eq. (1.6) with constant multipliers—the output is a sum of the 
individual responses. If the input can be “decomposed” into a sum of 
“elementary functions,” then the output of a linear system can be determined if 
the response to the elementary functions is known. Linearity leads to the 
following expression, known as a superposition integral: 
 

      2 2 2 1 2 2, , , ; ,g x y g h x y d d     




   . (1.7) 

 
The function h is the impulse response of the system, and the integrals indicate 
that the output of the system is a superposition—or sum—of an infinite set of 
impulse responses that multiply the input function. The impulse response is 
modeled by 
 
       1122 ,,;, yxSyxh . (1.8) 
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A linear system is completely characterized by its responses to impulse functions, 
but to use this property in practice the responses must be known for all locations 
in the input plane (x1, y1). 

Linearity represents one level of simplification. Further simplification is 
afforded by the property of space invariance, where in its most basic form we 
write 
 
       111222 ,, yxgSyxg , (1.9) 
 
and, therefore, the impulse response simplifies to 
 
      2222 ,,;, yxhyxh . (1.10) 
 
This impulse response does not depend on the absolute position in the input plane 
or the output plane. It only depends on the relative separation of the input and 
output points as if they were to appear in a common x–y plane. An interpretation 
of this situation is that an impulse anywhere in the input plane creates a 
corresponding response in the output plane that changes position with the input 
but always has the same relative form. The superposition integral now becomes a 
convolution integral: 

      2 2 2 1 2 2, , ,g x y g h x y d d     




    . (1.11) 

 
In shorthand notation with the convolution operator , Eq. (1.11) is written as 
 
      yxhyxgyxg ,,, 12  , (1.12) 
 
where the subscripts on the x and y variables are no longer necessary. Taking the 
Fourier transform of each function in Eq. (1.12) and applying the convolution 
theorem yields 
 
      YXYXYX ffHffGffG ,,, 12  , (1.13) 
 
where H(fX, fY) is the Fourier transform of the impulse response h(x, y) and is 
known as the transfer function. Two valuable features of linear space-invariant 
systems are apparent from Eq. (1.13): 

1. Rather than directly tackling the convolution integral, a more 
computationally appealing route can be taken of transforming the input 
to the Fourier domain, multiplying by the transfer function, and inverse 
transforming to find the result. 

2. The transfer function model is analogous to frequency-filtering 
operations that are found in electric circuit theory, digital signal 
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processing, and many other disciplines involving signal analysis. Insights 
from these areas can often be applied to Fourier methods associated with 
optical systems. 

1.7 Exercises 

1.1 Sketch the following functions: 

 (a) 







2
rect

x
, 

 (b)  2rect x , 

 (c) 





 


2

2x
, 

 (d)  2exp 3πx , 

 (e)   
























12
rect

4
comb

x
x

x
, 

 (f)     




 





  2222 2circ2circ yxyx . 

 
1.2 Using known transform pairs and theorems, find the Fourier transforms of the 

following: 

 (a) 















w

y

w

x

2
rect

2
rect , 

 (b) 













 
w

y

w

xx

2
rect

2
rect 0 , 

 (c) 






 


2

22

exp
w

yx
, 

 (d) 











 













 

2

22

1

22

circcirc
w

yx

w

yx
, 

 (e)  
   













 














 

w

ydx

w

ydx 2222 2/
circ

2/
circ . 

 
1.3 Perform the following convolutions by applying the convolution theorem: 
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 (a) 






























w

y

w

x

w

y

w

x

2
rect

2
rect

2
rect

2
rect , 

 (b) 
2 2 2 2

2 2
exp π exp π

3 4

x y x y    
     
   

, 

 (c)    y
x

y
x

sinc
4

sincsinc
2

sinc 














. 

 
1.4 Find the autocorrelations of the following: 

 (a) 















w

y

w

x

2
rect

2
rect , 

 (b) 
2 2

2
exp π

x y

w

 
 
 

. 

 

1.5 Apply the central ordinate theorem to find ( , )g x y dxdy   for the following, 

and compare the results with simple area calculations: 

 (a) 















w

y

w

x
yxg

4
rect

2
rect),( , 

 (b) 











 


3
circ),(

22 yx
yxg . 

 
1.6 Demonstrate whether the following operations are linear and/or space 

invariant, where A, B, a, and b are scalar constants: 

 (a)   ),(),( yxAgyxgS  , 

 (b)   ),(),( yxAgyxgS  +B, 

 (c)    2),(),( yxgAyxgS  , 

 (d)    yxxgyxgS ,),(  , 

 (e)  
2 2

2 2

1
Ave ( , ) ( , )

a b
x y

a b
x y

g x y g d d
ab

   
 

 

   . 
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Chapter 2 

Sampled Functions and the 
Discrete Fourier Transform 
 
 
When implementing Fourier optics simulations on the computer it is necessary to 
represent functions by discrete arrays of sampled values and apply transform and 
processing methods designed for these discrete signals. To come as close as 
possible to simulating continuous space, it would be great to model the physical 
elements with a gazillion samples. However, computer memory and execution 
time limitations won’t allow this. Thus, devising practical Fourier optics 
simulations becomes an act of balancing acceptable sampling artifacts and 
available computer resources. This chapter begins to address this matter with 
discussions of the sampling of continuous functions, the Shannon–Nyquist 
sampling theorem, and the concept of effective bandwidth. The remainder of the 
chapter concerns the discrete Fourier transform (DFT), the workhorse tool for 
computational Fourier analysis. We look at its relationship with the analytic 
transform, describe implementation details, and discuss how DFT results differ 
from the analog world. 

2.1 Sampling and the Shannon–Nyquist Sampling Theorem 

Consider the two-dimensional (2D) analytic function g(x,y) and suppose it is 
sampled in a uniform manner (Fig. 2.1) in the x and y directions, which is 
indicated by 
 
 ),(),( ynxmgyxg  , (2.1) 
 
where the sample interval is x in the x direction and y in the y direction, and m 
and n are integer-valued indices of the samples. The respective sample rates are 
1/x and 1/y. In practice, the sampled space is finite and, assuming it is 
composed of M  N samples in the x and y directions, respectively, m and n are 
often defined with the following values: 
 

 1
2

,,
2


MM

m  , 1
2

,,
2


NN

n  . (2.2) 
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(a) (b) 
 

Figure 2.1 Two-dimensional function: (a) analytic and (b) sampled versions. 

 
This is a standard index arrangement where M and N are assumed to be even. 
Even numbers of samples are used in this book for reasons associated with 
discrete Fourier transform efficiency and sample arrangement (see Section 2.4). 

A finite physical area (e.g., units of m2) is spanned by the sampled space, and 
this is given by LX  LY, where LX is the length along the x side of the sampled 
space and LY is the length along the y side (Fig. 2.1). LX and LY are referred to as 
the side lengths. They represent physical distances and are related to the 
sampling parameters by 

 
 xMLX  ,  yNLY  . (2.3) 
 

An obvious sampling concern is whether all the significant values of g(x,y) 
“fit” within the physical area defined by LX  LY. The support of g(x,y) refers to 
the span of the significant values. This concept is illustrated in Fig. 2.2(a) for one 
axis. If DX is the support in the x direction and DY is the support in the y direction, 
then for the significant values of g(x,y) to be contained within the array requires 
 
 XX LD   ,  YY LD  . (2.4) 
 

Another concern is whether the sample intervals are small enough to preserve 
the features of g(x,y). For functions that are bandlimited, where the spectral 
content of the signal is limited to a finite range of frequencies, a continuous 
function can be recovered exactly from the samples if the sample interval is 
smaller than a specific value. The Shannon–Nyquist sampling theorem, extended 
to two dimensions, states this requirement as1 
 

 
XB

x
2

1
 , 

YB
y

2

1
 , (2.5) 

 

LY 

LX 

x 

y 

x 

y 

y 

x 
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(a) (b) 
 

Figure 2.2 Illustration of the (a) support DX and (b) bandwidth BX along the x axis of 
 g(x, y). Bandwidth is commonly defined as a half-width measure and is illustrated here 
 with a profile of |G(fX, fY)|, the Fourier transform magnitude of g(x, y). 
 
where BX is the bandwidth of the spectrum of the continuous function along the x 
direction and BY is the bandwidth along the y direction. Bandwidth is illustrated 
in Fig. 2.2(b). Violating Eq. (2.5) results in aliasing, in which undersampled 
high-frequency components in the signal are interpreted erroneously as low-
frequency content. This issue is considered further in Section 2.5. A related 
parameter is the Nyquist frequency given by  
 

 
x

f NX 


2

1
, 

y
f NY 


2

1
, (2.6) 

 
which is half the sample rate and corresponds to the maximum spatial frequency 
that can be adequately represented given the interval x or y. 

2.2 Effective Bandwidth 

Practical functions such as those defined in Chapter 1 are not bandlimited. In 
fact, any function with finite support, like the rectangle or circle functions, 
cannot be bandlimited. Often these functions have an effective bandwidth that 
encompasses the most significant frequency values. Even though the criteria 
posed by the Shannon–Nyquist theorem may not be completely satisfied, a small 
enough sample interval can be found to provide an acceptable representation of 
the analytic function where the effects of aliasing are small. 

For example, consider a 2D square signal with half-width of w: 
 

 















w

y

w

x
yxf

2
rect

2
rect),( . (2.7) 

 
The analytic Fourier transform yields the spectrum 
 

~ DX 
x 

~ BX 
fX 

g(x, y) |G(fX, fY)| 
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      2, 4 sinc 2 sinc 2X Y X YF f f w wf wf . (2.8) 

 
One approach to defining the effective bandwidth is to find the spectral width 
(radius) that contains a high percentage of the total power in the spectrum. 
Applying Parseval’s theorem, the total spectral power of Eq. (2.8) is 
 

 

     22 2 2

2 2 2

4 sinc 2 sinc 2

rect rect 4
2 2

T X Y X YP w wf wf df df

x y
dxdy w

w w











       
   

 

  . (2.9) 

A practical criterion for the effective bandwidth B is to include 98% of the total 
spectral power. Converting to polar coordinates to allow a radial bandwidth value 
B to be considered leads to 
 

      22 2 2

0

2π

0

1
4 sinc 2 cos sinc 2 sin 0.98

T

B

w w w d d
P

               ,(2.10) 

 
where fX =  cos  and fY =  sin . The integrals on the left side can be evaluated 
numerically for various values of B until Eq. (2.10) is satisfied. With this 
approach the effective bandwidth is found to be 
 

 
w

B
5

 . (2.11) 

 
Figure 2.3 illustrates the portion of the spectrum that encompasses 98% of the 
spectral power. Substituting Eq. (2.11) into Eq. (2.5) for the bandwidth gives 
 

 
10

w
x  , (2.12) 

 
which says at least 10 samples across the half-width of the rect function (20 
across the full width) are required to retain the effective bandwidth indicated in 
Eq. (2.11). It is important to realize that the part of the analytic spectrum that lies 
beyond the Nyquist frequency does not simply disappear. Even though small in 
power, it can introduce noticeable aliased frequency content that is erroneous.  
 Table 2.1 shows effective bandwidth values for square, circle, and Gaussian 
functions computed in the same way. A larger effective bandwidth can be used if 
there is a need to include more of the spectral power. 
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Figure 2.3 (a) Magnitude of the Fourier spectrum and (b) power spectrum of g(x,y) = 
rect(x/w) rect(y/w), comprising 98% of the total spectral power. 
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2.3 Discrete Fourier Transform from the Continuous Transform 

The DFT, usually in the form of its highly efficient offspring—the fast Fourier 
transform (FFT)—is a fundamental tool for modeling Fourier optics problems on 
the computer. The objective for this section is to develop the DFT, a discrete 
implementation of the continuous Fourier transform. The derivation is helpful for 
understanding the scaling of the spatial sample coordinates and frequency 
coordinates, as well as the constants multiplying a discrete transform result. This 
scaling is an important part of modeling a physical optics problem. Only the 
aspects of the DFT and FFT that are critical to the simulation approaches covered 
in this book are highlighted, so there are many more details to be discovered (or 
rediscovered) in other resources.2–4 

The analytic Fourier transform of a function g of two variables x and y is 
repeated here for reference 

 

 
   , ( , )exp 2πX Y X YG f f g x y j f x f y dxdy





      . (2.13) 

 
First, assume g(x,y) is sampled as indicated in Eqs. (2.1) and (2.2). To simplify 
some of the notation, the following substitution can be used where the actual 
sample intervals are not explicitly shown: 
 

 ),(~),( nmgynxmg  . (2.14) 
 
Next, the integrals in Eq. (2.13) can be approximated using a Riemann sum: 
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Table 2.1 Effective bandwidth for 98% power. 
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Because the DFT operation is performed generically on a discrete array of values 
without specific sample interval information, the multipliers xy in Eq. (2.15) 
are not included in the DFT definition. However, these multipliers need to be 
applied subsequently to the DFT operation for appropriate scaling of a physical 
problem. 

The convention for the frequency domain is to divide this continuous 
“space,” indicated by fX and fY, into M and N evenly spaced coordinate values. 
This involves the following substitutions: 
 

 
,X

p
f

M x



 where , , 1;

2 2

M M
p     

 

 
,Y

q
f

N y


  
where , , 1;

2 2

N N
q     (2.16) 

 
where p and q are integers that index multiples of the frequency sample intervals  
 

 
X

X LxM
f

11



 , and 

Y
Y LyN

f
11




 . (2.17) 

 
In fact, p and q take on the same values as m and n, respectively, since the spatial 
and frequency arrays have the same number of elements. Note that the maximum 
absolute values of the frequency coordinates in Eq. (2.16) are the Nyquist 
frequencies )2/(1 x  = fNX and )2/(1 y  = fNY. Incorporating Eq. (2.16) into the 
complex exponential kernel of Eq. (2.13) yields 
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         
 (2.18)

 

 
Finally, substituting Eqs. (2.14)–(2.18) into Eq. (2.13), we arrive at the following 
form of the DFT: 
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, ( , )exp 2π
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G p q g m n j
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 
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where ),(
~

qpG  represents the DFT of ),(~ nmg . The inverse discrete Fourier 
transform (DFT−1) is derived in a similar way and is written as 
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       
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The appearance of the 1/MN multiplier in Eq. (2.20) requires some discussion. 
The factor is equal to the product xyfXfY [see Eq. (2.17)], which comes 
about when numerically evaluating a forward, and then an inverse Fourier 
integral in succession. This factor allows the DFT followed by the DFT−1 to 
return the original function values, which is consistent with the Fourier integral 
theorem. The application of 1/MN varies in different software tools. For example, 
MATLAB implements the transform and inverse transform based on the 
definitions in Eqs. (2.19) and (2.20), but some applications apply a (MN)−½   
factor to both the forward and inverse transforms. In some modeling situations 
we will need to account for this factor. 

The forward and inverse DFTs are not usually accomplished with a direct 
execution of Eqs. (2.19) and (2.20), but rather they are accomplished with the 
computationally efficient FFT and FFT−1 algorithms. These algorithms 
implement a scheme that is not of specific importance here other than to say that 
the result is consistent with Eqs. (2.19) and (2.20). FFT algorithms are most 
efficient when M and N are a power of 2, although computation times can be 
nearly as fast for other values. A practical issue for FFT implementation concerns 
the arrangement and indexing of data values in an array. This issue is now 
discussed below. 

2.4 Coordinates, Indexing, Centering, and Shifting 

Uniform sampling and square grids, where y = x, N = M, and LX = LY = L, are 
often used in practice. This will be the case for all the examples presented in this 
book; so, to simplify the presentation often only one set of variables is discussed.  

Considering Eqs. (2.1) and (2.2), the coordinates of the samples along one 
dimension can be described as 
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2
, (2.21) 

 
where the above notation is borrowed from MATLAB and indicates that the 
coordinates range from –L/2 to L/2−x in steps of x. The y-axis coordinates are 
defined similarly. Assuming a FFT relationship between the spatial and spectral 
domains, then from Eqs. (2.16) and (2.17) the following is derived: 
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which indicates that the spatial frequency coordinates range from 1/(2x) to 
1/(2x)1/L in steps of fX = 1/L. Again, the fY coordinates are similar.  

The integer index variables m and n, as well as p and q introduced in Eqs. 
(2.2) and (2.16) span negative as well as positive values. However, software 
applications use positive integer values for vector or array (matrix) indexing. In 
the case of MATLAB, indexing for a one-dimensional (1D) vector begins at (1). 
For display purposes it is convenient to “center” the function of interest in the 
vector, which means the zero coordinate will correspond to the (M/2+1) index. 
However, the convention for the 1D FFT algorithms is that the data value placed 
in the first index position corresponds to the zero coordinate. Thus, a “shift” of 
the centered vector values is needed before an FFT operation.  

Figure 2.4 illustrates arrangements of values and indices of a 1D sampled 
rect function and its spectrum. The arrangement in Figs. 2.4(a) and (b) is 
consistent with the analytic development in Section 2.1, where indices span 
negative and positive values. Figures 2.4(c) and (d) illustrate the centered 
arrangement in the computer with positive indices, and Figs. 2.4(e) and (f) show 
the shifted arrangement that is necessary prior to an FFT or FFT−1. Conversion 
between the centered and shifted arrangements can be done easily with the 
MATLAB command fftshift. Reversing the shift to get back to the centered 
arrangement is done with ifftshift. 

For a 2D array, MATLAB indexing begins at (1,1). A centered function has 
the zero-coordinate [x,y] = [0,0] value located at index (N/2+1, M/2+1). Prior to 
the 2D FFT, a shift is needed to place the zero-coordinate value at index (1,1). 
Figure 2.5 illustrates the centered and shifted arrangements for 2D arrays. In Fig. 
2.5, row order is top-to-bottom, column order is left-to-right. The required shift is 
actually a swapping of array quadrants. Again, fftshift and ifftshift can 
be applied to move between the centered and shifted arrangements. 

A confusing detail for 2D array data is that MATLAB uses a row–column 
indexing scheme, where (i, j) indicates the ith row and the jth column. This is, in 
a sense, a reverse of standard Cartesian coordinate notation, where x (horizontal 
axis or “column”) is listed first and y (vertical axis or “row”) is listed second. 
Thus, the j-indices correspond to x-coordinates and i-indices correspond to y-
coordinates. This explains the (j, i) listing (N/2+1, M/2+1) paired with [x,y] 
values in Fig. 2.5. Fortunately, MATLAB’s vector operation notation is 
developed for the Cartesian coordinate system; so, this issue is mostly transparent 
as far programming is concerned. It is only when the actual integer index values 
are used in codes that this array arrangement becomes an issue. 

2.5 Periodic Extension 

Roughly speaking, all of the Fourier transform theorems listed in Table 1.1 can 
be applied in the discrete domain. For example, a convolution can be performed 
by computing the FFTs of two discrete functions, multiplying the results (point-
wise) and computing the FFT−1. However, discrete transform results differ from 
analytic results in a way that is characterized by a concept known as periodic 
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Figure 2.4 Sampling arrangements for 1D spatial (left column) and frequency (right 
column) vectors: (a) and (b) analytic; (c) and (d) centered; and (e) and (f) shifted for FFT 
operations. 

 
extension. Here, we provide a short discussion of this property and an 
illustration. The topic is covered in more depth in other resources, such as the 
work by Brigham.4 Consider the 1D, analytic function f(x) and a sampled version 
given by 
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Figure 2.5 Sampling arrangements for 2D spatial array: (a) centered and (b) shifted for 
the 2D FFT. 
  
The comb function “picks out” the sample values at intervals of x and the rect 
function sets the overall sampled space as L. Taking the analytic Fourier 
transform of Eq. (2.23) gives 

 

     XXXX LfLxfxfFfF sinccomb)()(  . (2.24) 
 
This result is a continuous function where the analytic spectrum F(fX) is repeated 
at intervals of 1/x. The sinc convolution is a “smoothing” process. However, the 
FFT operation actually produces a sampled result that can be modeled by altering 
Eq. (2.24) with a sampling term 
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The new comb term sets the sample spacing in the frequency domain to be 1/L. 
This is consistent with Eq. (2.17). By inverse transforming Eq. (2.25), we find 
the function that corresponds to the spectrum )( XP fF : 
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So, the periodic extension concept can be described as follows: although we start 
with a sampled version of )(xf in the spatial domain, when the FFT is performed, 

it is as if we started with the periodic function )(xf P  and produced the periodic 

spectrum )( XP fF . 
To illustrate, an analytic rectangle function is shown in Fig. 2.6 (solid line) 

along with a sampled version (dots). The sampled version is contained in a vector 
of length 20, where L = 20 and x = 1. The periodic form of the function, which 

(N/2+1, M/2+1) 
[0,0] 

(1, 1) 
[0, 0] 

3 4 

2 1 4 3 

1 2 

(1, 1) 
[LX/2, LY/2] 

(N/2+1, M/2+1) 
[LX/2, LY/2] 

Centered Shifted 

(a) (b) 



24  Chapter 2 

 
 

extends (virtually) beyond the original span of the sample vector, is also 
indicated (dashed line). Figure 2.6(b) shows the magnitude of the analytic 
spectrum of the rectangle (solid), the FFT result (dots), and the periodic spectrum 
(dashed). Figure 2.6(b) illustrates the FFT samples follow the periodic spectrum. 
The most obvious difference between the analytic and sample spectra in this case 
is slightly larger sample values in the magnitude lobes at higher frequencies. This 
effect results from aliasing of undersampled frequencies in the rectangle 
spectrum. The periodic extension concept is an instructive way to define this 
effect. In practice, by sampling a function to preserve the effective bandwidth— 
for example, the 98% level—only a small amount of aliasing is introduced. 

2.6 Periodic Convolution 
Another issue discussed in the context of periodic extension is periodic 

convolution. If the FFT is applied to perform the convolution f(x)h(x), the result 
is actually a scaled form of fP(x)hP(x), where the periodic form fP(x) is 
 

 
 

Figure 2.6 Periodic extension illustration: (a) rect function—analytic (solid), periodic 
extension (dash) and sampled (dot); and (b) rect spectral magnitude—analytic (solid), 
periodic extension (dash) and FFT samples (dot). 
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convolved with the periodic form hP(x). This situation is illustrated in Fig. 2.7 for 
rectangle and right triangle functions. Sampled versions of both functions are 
contained in vectors of 20 samples [Figs. 2.7(a) and (b)]. Conceptually, a 
convolution requires one function to be reversed, or “flipped,” relative to the 
axis. The reversed function is translated across the second function, and the 
overlap area is recorded. Figure 2.7(c) shows the right triangle at a particular 
position in translation across the rectangle. The overlap area for an analytic 
convolution is the small gray triangle. However, because of periodic extension, a 
strip on the left side of the triangle is also overlapping a rectangle copy. This area 
is included in the discrete convolution result. As the right-triangle continues 
translating to the right, the erroneous area drops away, but the edges of the 
convolution result [dots in Fig. 2.7(d)] follow the periodic result. 

In order for the periodic convolution to match the analytic convolution, the 
combined support of the two functions being convolved needs to be less than the 
array side length, or 

 
 LDD  21 . (2.27) 
 
For the example in Fig. 2.7, D1 = 9 and D2 = 15, but L = 20; so, Eq. (2.27) is 
violated, and the FFT-derived result does not match the analytic result. 

2.7 Exercises 

2.1 For a sample interval of x = 10 m and side length L = 5 mm, what is the 
sample number M? What is the Nyquist frequency? What is the frequency 
sample interval? What is the range of coordinates in the spatial domain? 
What is the range of the coordinates in the frequency domain? 

2.2 Consider the following:  
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For each function determine the following: (1) the effective bandwidth; (2) 
the maximum sample interval x necessary to satisfy the sampling theorem 
given the effective bandwidth; and (3) assuming 256 samples (linear 
dimension), the maximum side length that can be modeled. 
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Figure 2.7 Periodic convolution illustration: (a) sampled rect function; (b) sampled right-
triangle function; (c) shift and overlap illustration—periodic functions (dash) and sampled 
(dot) functions; and (d) convolution results—analytic (solid), periodic (dash) and FFT (dot).  
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2.3 What is the support of the following function along one dimension if the 
support is defined by where the function value drops to 1% of its peak? 
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2.4 What is the bandwidth along one axis for the following? 
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2.5 Consider the following two functions: 
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(a) What is the minimum side length required to accommodate a   

convolution of these two functions?  

(b) What is the minimum side length required to accommodate the   
autocorrelation of g2(x, y)? 
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Chapter 3 

MATLAB Programming of 
Functions, Vectors, Arrays, 
and Fourier Transforms 
 
 
By following the examples presented in this chapter, you will gain some 
familiarity with MATLAB, learn how to implement a function, compute the 
discrete Fourier transform, and compare the result with analytic theory. For 
instructional purposes, most of the examples are one-dimensional (1D) problems, 
but two dimensions are introduced at the end of the chapter. MATLAB is a 
mathematics and graphics software application with its own interpreted language 
that is widely used for simulation and modeling in science and engineering 
disciplines. It is optimized for vector and matrix operations and, therefore, is a 
good tool for Fourier optics simulations, which generally involve at least two 
dimensions. The examples in this chapter and throughout the book use a basic set 
of MATLAB features, in part to keep the material at a tutorial level but also 
because the details of the programming steps are more obvious. As you become 
familiar with the software, you may find more convenient and efficient ways to 
implement the programming. MATLAB Version 7.1 is used in this book. 

3.1 Defining Functions 

Open MATLAB. The windows that are commonly displayed include the 
“Current Directory,” “Command Window,” and “Command History.” These 
windows are often grouped together as part of the main window that comprises 
the MATLAB “Desktop” (Fig. 3.1). The Current Directory shows the folder in 
which your work will be stored and MATLAB-related files that are in that folder. 
Code can be entered in the Command Window where it is executed a line at a 
time as it is entered. Numerical output, such as the value of a variable, can also 
be displayed in the Command Window. The Command History shows a compact 
listing of the commands that have been entered in the Command Window. 
Another important window that can be called up is the “Editor Window,” where 
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Figure 3.1 The MATLAB Version 7.1 desktop screen shows the Current Directory window 
(upper left), the Command History window (lower left), the Editor (“docked” in the upper 
right of the Desktop by clicking the down-curving arrow in the Editor window), and the 
Command Window (lower right). 
 
code can be entered and saved as a file (an M-file with extension “.m”). Two 
different types of M-files can be created: a script or a function. A script is a 
collection of code lines that can be executed as a program. When a script is 
executed, numerical output shows up in the Command Window. Function M-
files can be called from the Command Window or from a script to do a particular 
task and return a result. The examples presented here are described as being 
entered in the Editor Window, which allows your script to be saved in an M-file; 
but, the code can also be entered directly and executed in the Command Window.  

The first thing to do is make a new folder for your work. On the toolbar 
above the Current Directory, click on the “New Folder” icon and a folder should 
appear with a cursor positioned to enter the folder name. Type in a name, such as 
“Fourier Optics,” and click anywhere on the folder line or hit Enter. Then double 
click on this folder in the Current Directory window to open it as your current 
storage area. 

The first programming step will be to create a rectangle (rect) function. Once 
created, this piece of code can be called from a script to generate a vector 
containing a sampled rectangle function. Call up the Editor Window by clicking 
on the New M-file icon (a document-like icon), which is on the far left of the 
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MATLAB main Desktop toolbar. A cursor next to the line number 1 should 
appear in the window. Type in the following: 
 

1 function[out]=rect(x); 
2 % rectangle function 
3  
4 out=abs(x)<=1/2; 
5 end 

 
To do this, simply type out each line, and hit the Enter key at the end of each 

line. MATLAB uses a simple text format, so special function keys are not 
required for entering the code. The “%” character indicates that the text that 
follows is a comment and not to be interpreted for execution. Some of the text in 
the display will be colored. Comment text is displayed in green. As always, 
documentation of your code is important and a few comments are included in the 
examples presented throughout this book; but, in general, they are kept to a 
minimum to keep the presentation concise. Comments can also be added on the 
same line following the code. 

Blue-colored text indicates built-in MATLAB functions. The function 
command sets up this M-file to be a function named “rect” with an input vector 
“x” and an output vector “out.” MATLAB is most proficient with vector and 
matrix operations, so the code tends to involve variables that are vectors and 
arrays as opposed to single parameters. The code in line 4 uses a vectorized 
logical test feature in MATLAB. The “abs” command takes the absolute value 
of each x element and “<=” applies the “less than or equal” test to each element. 
If the test is “true” (less than or equal to 1/2), then 1 is returned for that element. 
If the test is “false,” a 0 is returned. The vector out has the same number of 
elements as x and will contain the sampled rectangle function. The semicolon at 
the end of a line suppresses the output in the Command Window as the code is 
executing. 

In the rect code, the samples at the edges of the rectangle are not allowed 
to take on a value of 1/2 as in the analytic rectangle function definition (see 
Section 1.5). Doing so can be interpreted as a “slope” at the edge rather than a 
sharp transition, so we choose to work with a single point transition. The coding 
we use for rect has the characteristic that the full width of the function is 
always created with an odd number of samples. If a situation comes about where 
a rectangle with an even number of samples is requested, one more sample than 
expected will be returned. Some of the examples in the book use a width or 
radius value that is not a round number—this is simply to be consistent with the 
odd number of samples that will return from calling rect. 

When you are done typing the code, click on “Save” (floppy disk icon) on 
the Editor Window toolbar and save the function with the name “rect.” It is 
recommended that the file name be the same as the function name. An M-file 
with the name “rect.m” should appear in the Current Directory window. Close 
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the Editor Window. The function “rect” can now be called by any other script 
that is operating within the “Fourier Optics” folder. 

3.2 Creating Vectors 

Suppose we want to program a simulation of a 1D spatial rectangle function with 
a half width of 0.055 m (full width of 0.11 m). This rectangle function will be 
created in a vector that corresponds to a physical length (side length L) of 2 m. If 
the number of samples in the vector is 200, then the sample interval x (or “dx” 
in the code) is 0.01 m. Open a new Editor Window by going to the main 
MATLAB desktop toolbar and clicking on New M-file. In the new window, enter 
the following lines: 
 

1 % fft_example - Chapter 3 fft example 
2  
3 w=0.055;        %rectangle half-width (m) 
4 L=2;            %vector side length (m) 
5 M=200;          %number of samples 
6 dx=L/M;         %sample interval (m) 

 
Here, the parameters for the rectangle physical size, the vector side length, the 
number of samples, and sample interval are defined. Add the following code: 
 

7 x=-L/2:dx:L/2-dx;   %coordinate vector  
8 f=rect(x/(2*w));    %signal vector 

 
The “*” indicates multiplication. In this code, the coordinate vector x is created 
with values ranging from 1 (= –L/2) to 0.99 (= L/2-dx) in steps of 0.01 
(dx). The colons separate the range and step size. The subtraction of one step off 
the high limit results in a vector of 200 samples. The signal vector “f” is created 
with the help of the previously defined rect function and the use of the 
coordinate vector x. Since 2*w is a scalar, the interpretation is that each sample 
in x is divided by 2*w and the resulting vector is input to the rect function. To 
display what you have created in a plot of the f values against the x values, add 
the following lines: 
 

9 figure(1) 
10 plot(x,f);       %plot f vs x 

 
The “figure(1)” command opens a window labeled “Figure 1” and “plot” 
makes a plot. Before executing this script, you need to save it to a disk. Click on 
Save on the Editor Window toolbar and save this M-file with the name 
fft_example. Don’t use any spaces in the name, as that can be interpreted as a 
request to link to another function; to execute, click on Run in the Editor 
Window toolbar (a triangle icon or for older MATLAB versions an arrow beside 
a document icon). If there are no errors in your code, the plot of f should appear  
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Figure 3.2 A rect function example plot. 
 
in the Figure 1 window. If something is wrong with the code, you will see a 
message in the Command Window. The plot should look like Fig. 3.2. 

There are many options for adjusting the plot display, which include 
changing the limits on the axes, adding labels, and changing graph lines and 
symbols. One approach is to use the “Edit Plot” (arrow icon) editor on the toolbar 
that appears at the top of each figure window. In this tutorial we will not go over 
the use of this editor and the reader is referred to the MATLAB “Help” (the “?” 
icon on the MATLAB Desktop window) to learn more. 

The plot editor is a way to interactively work with the display. However, the 
changes made to the plot are not recorded in the code; so, the next time the script 
is executed, the plot will be displayed as it was before editing. Commands can be 
included in the script to adjust the plot. For our example, go back and edit the last 
plot command and add “axis” and “xlabel” command lines: 
 

11 figure(2) 
12 plot(x,f,'-o');  %plot f vs x 
13 axis([-0.2 0.2 0 1.5]); 
14 xlabel('x(m)'); 

 
The added option in the plot command ('-o') places the marker o at each 
sample in the plot. The axis command sets limits on the values plotted on x  
and y axes and the xlabel command labels the x-axis. The figure(2) 
command will open a second window for this new plot. Without this command, 
the new plot would overwrite the first plot in the Figure 1 window. Note that the 
plot-modifying statements come after the plot call. 

Click on Run to execute the code (this also automatically saves the latest 
version of the code) and the plot appearing in the Figure 2 window (Fig. 3.3) 
more clearly shows the rectangle function. Note the distance across the top of the 



34  Chapter 3 

 
 

rectangle corresponds to 0.1 m (11 samples) whereas the base of the rectangle 
corresponds to 0.12 m (13 samples). The correct interpretation for this sampled 
rectangle function is a width of 0.11 m, which lies between the two measures. In 
fact, because the rect function coding generates an odd number of samples, if a 
half width of 0.05 m were used rather than 0.055 m, the resulting signal vector 
would be identical to that shown in Fig. 3.3, which means there would be a small 
disparity in the intended width and the digital representation. 

3.3 Shift for FFT 

Disregarding the coordinate vector x for a moment, in terms of the 200 samples 
in f, a rectangle function with a width of 11 samples has been created that is 
centered in the middle of the vector f. This can be visualized by adding the 
following code: 
 

15 figure(3) 
16 plot(f,'-o'); 
17 axis([80 120 0 1.5]); 
18 xlabel('index'); 

 
With the x argument removed from the plot command, the vector f is plotted 
as a function of the vector index values. The resulting plot (Fig. 3.4) shows the 
center sample of the rectangle function at index position 101. Centering the 
rectangle in the middle of the vector allows for easy viewing, but as described in  
Section 2.4, the FFT algorithm expects the zero-coordinate value to be in the first 
index location. To shift the values for the FFT operation, the “fftshift” 
command can be applied, which takes the samples of the first half of the vector 
and swaps them with the samples in the second half. Add the following the code 
to the program and run the script to get the plot in Fig. 3.5. 
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Figure 3.3 Expanded view of sampled rect function. 
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Figure 3.4 Sampled rect function versus index value. 
 

19 f0=fftshift(f);   %shift f 
20 figure(4) 
21 plot(f0); 
22 axis([0 200 0 1.5]); 
23 xlabel('index'); 

 
A close look at Fig 3.5 should convince you that the center sample of the 
rectangle is at index location 1, and five samples are found to the “right” and the 
remaining five to the “left,” where the left group is placed at the end of the 
vector. 
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Figure 3.5 Shifted rect function versus index value. 
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 A few comments about shifting for the FFT: first, it is more straightforward 
to use an even number of samples M for the vector and center the function of 
interest at an index of M/2+1. The fftshift function will then shift the M/2+1 
sample to index 1. In our example M = 200 and the definition of the x vector 
causes the rectangle function to be centered at the M/2+1 position (101). More 
care needs to be taken when shifting vectors that contain an odd number of 
samples. For example, if the fftshift function is used with an odd number of 
samples, then the ifftshift function should be used to undo the shift. For 
an even number of samples, the fftshift function works both forward and 
backward. A second comment is that without the shift operation the FFT 
algorithm generates a transform for a function that is translated from the zero 
position, which means a linear phase term will be present in the result (shift 
theorem!). 

3.4 Computing the FFT and Displaying Results 

To compute the FFT of the vector “f0,” add the following below the last piece 
of code: 
 

24 F0=fft(f0)*dx;    %FFT and scale 
25 figure(5) 
26 plot(abs(F0));    %plot magnitude 
27 title('magnitude'); 
28 xlabel('index'); 
29  
30 figure(6) 
31 plot(angle(F0));  %plot phase 
32 title('phase'); 
33 xlabel('index'); 

 
Here, the 1D FFT algorithm in MATLAB is used. A capital letter is used for the 
frequency domain vector. Multiplying the result by the sample spacing dx is 
necessary to correctly approximate the analytic Fourier transform integral. Since 
each sample in F0 contains two pieces of information (the real part and the 
imaginary part); or alternatively, the magnitude and the phase, two plots can be 
used to display this result. The “abs” command takes the absolute value 
(magnitude) of the samples in F0 and the “angle” command extracts the phase 
of the samples, with output values ranging from − to . Plot titles and x-axis 
labels have been included in this code. Run the script and the plots should look 
like those in Fig. 3.6. 
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Figure 3.6 (a) Magnitude and (b) phase plots for FFT result versus index. 
 
The sinc function nature of the magnitude result in Fig. 3.6 is obvious where 

the peak of the sinc is centered at index 1. However, note that the samples are not 
located exactly where the “zeros” of the magnitude would occur. Thus, the 
valleys shown in the curve do not necessarily appear to reach zero. The phase 
plot may look curious, but there are essentially three phase values in the plot: 0, 
−, and . However, − and  represent the same value in a modulo 2 format, 
so the sharp transitions in the plot between − and  are not particularly 
important, and the phase is effectively constant in these places. These sharp 2 
transitions occur because of slight numerical differences between samples. With 
this interpretation, you should understand that the important phase transition is 
from 0 to  (or −), which occurs about every 18 points. Comparing the phase 
plot with the magnitude plot, it is apparent that the  transition occurs at the 
magnitude zeros. Furthermore, a phase value of  is equivalent to placing a 
minus sign on the magnitude value. Combining all of this information, the 
magnitude and phase plots of Fig. 3.6 represent a real-valued sinc function where 
the values in the main lobe are positive, the values in the first lobe are negative, 
the second lobe values are positive, and so on. In this case the real-valued sinc 
function could have simply been displayed on one plot; but, in general, Fourier 
transform results are complex. 

Once again for display reasons, it is helpful to center the FFT result in the 
vector. In addition, the spatial frequency coordinates need to be determined. Add 
the following to your script (cutting and pasting from the earlier code can help 
accomplish this quickly): 

 
34 F=fftshift(F0);   %center F 
35 fx=-1/(2*dx):1/L:1/(2*dx)-(1/L); %freq cords 
36  
37 figure(7) 
38 plot(fx,abs(F));  %plot magnitude 
39 title('magnitude'); 
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40 xlabel('fx (cyc/m)'); 
41  
42 figure(8) 
43 plot(fx,angle(F));  %plot phase 
44 title('phase'); 
45 xlabel('fx (cyc/m)'); 

 
The frequency coordinates in fx are created as defined in Section 2.4. Running 
the script generates the plots shown in Fig. 3.7, where the sampled Fourier 
magnitude and phase are centered, and the frequency axis is scaled appropriately. 

3.5 Comparison with Analytic Results 

When possible, it is good practice to test a new piece of code by applying simple 
inputs where the result can be compared with an analytic result. This helps 
diagnose problems and lets you build on previous code with confidence. For the 
example given in Section 3.4, an analytic result is easily found. For the 
expression 
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the Fourier transform is 
 

 XX wfwfF 2sinc2)(  . 
 
To compare the discrete result with the analytic result, add the following code to 
the “fft_example” script: 
 

46 F_an=2*w*sinc(2*w*fx);  %analytic result 
47  
48 figure(9) 
49 plot(fx,abs(F),fx,abs(F_an),':'); %plot magnitude 
50 title('magnitude') 
51 legend('discrete','analytic') 
52 xlabel('fx (cyc/m)') 
53  
54 figure(10) 
55 plot(fx,angle(F),fx,angle(F_an),':'); %plot phase 
56 title('phase') 
57 legend('discrete','analytic') 
58 xlabel('fx (cyc/m)') 

 
Here, the frequency coordinates fx are used as input to the analytic solution to 
create the vector F_an. Note that the MATLAB built-in sinc function is used 
since it conforms to our definition (see Table 1.2). The plot command 
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Figure 3.7 (a) Magnitude and (b) phase plots for centered FFT result. 
 
arguments are set up to graph the discrete and analytic results on the same plot, 
and the legends are added to the display. 

The resulting plots (Fig. 3.8) compare the FFT and analytic results. The 
magnitude results are nearly identical, but the FFT result has slightly higher 
values than the analytic curve at the edges. This is a result of the periodic 
extension property of the FFT (Section 2.5). The phase plots differ only in some 
transitions between  and − for the digital result, which are of no consequence.  

3.6 Convolution Example 
A convolution can be performed using the FFT and applying the Fourier 
convolution theorem. The example presented here involves the convolution of 
two Gaussian functions of different widths. In the Editor Window, select New M-
file and enter the following code that defines and generates sample values for the 
two functions fa and fb: 
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Figure 3.8 Comparison of (a) magnitude and (b) phase of FFT and analytic results. 
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1 % conv_example - Convolution: two Gaussian functions 
2  
3 wa=0.3;   %Gaussian 1 width [exp(-pi) radius](m) 
4 wb=0.2;   %Gaussian 2 width [exp(-pi) radius](m) 
5 L=2;      %side length (meters) 
6 M=200;    %number of samples 
7 dx=L/M;   %sample interval (m) 
8  
9 x=[-L/2:dx:L/2-dx];       %x coordinates  
10 fa=exp(-pi*(x.^2)/wa^2);  %Gaussian a 
11 fb=exp(-pi*(x.^2)/wb^2);  %Gaussian b 
12  
13 figure(1) 
14 plot(x,fa,x,fb,'--'); title ('functions'); 
15 xlabel('x (m)'); 

 
Select the name “conv_example” for this M-file. Note the command for squaring 
each value in the x vector requires a period before the “^” symbol. Without the 
period, MATLAB will attempt a vector rather than a single element operation. 
Running this code produces the plot shown in Fig. 3.9(a). Now add the following 
to compute and plot the convolution result: 
 

16 Fa=fft(fa);        %transform fa 
17 Fb=fft(fb);        %transform fb 
18 F0=Fa.*Fb;         %multiply pointwise 
19 f0=ifft(F0)*dx;    %inverse transform and scale 
20 f=fftshift(f0);    %center result 
21  
22 figure(2) 
23 plot(x,f); title('convolution') 
24 xlabel('x (m)') 
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Figure 3.9 (a) Two Gaussian functions and their (b) convolution result. 
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The FFTs of the Gaussian vectors are first computed. The functions fa and fb 
need not be shifted prior to the FFTs since the convolution only depends on their 
relative positions. The transform results are next multiplied “pointwise” 
orelement by element. This operation is indicated with a period placed before the 
product operator (.*). Without the period a vector/matrix multiplication would 
be attempted. Running the code produces the result shown in Fig. 3.9(b). 

As introduced in Section 2.6, a critical consideration for a convolution 
computed in this way is the periodic extension property of the FFT. The criterion 
is that the sum of the function’s supports should be less than the vector length. 
From Fig. 3.9(a), the estimated support of the significant values in the first 
Gaussian is Da  0.9 m and for the second Db  0.6, thus the sum of these 
two is less than the vector length L = 2 m. Exercise 3.2 gives you a chance to 
check if the curve in Fig. 3.9(b) is indeed a good representation of the analytic 
convolution. 

In this book convolutions are coded directly by applying the convolution 
theorem, but MATLAB has the built-in function conv and for two dimensions, 
conv2. To strictly avoid artifacts due to the periodic convolution, these 
functions “zero-pad” the initial vectors, placing them in double-sized vectors or 
arrays of zeros, and then performing the convolution. For computational speed 
and efficiency we tend to work with fixed array sizes and pay heed to the support 
of the signals, as was done in the example above. 

3.7 Two Dimensions 

Physical optics problems typically involve at least two spatial dimensions. Start a 
New M-file, named fft2_example, and enter the following code to generate a 
two-dimensional (2D), sampled rectangle function: 
 

1 % fft2_example - 2D FFT example 
2  
3 wx=0.1;          %rect x half-width (m) 
4 wy=0.05;         %rect y half-width (m) 
5 L=2;             %side length x&y (m) 
6 M=200;           %samples/side length 
7 dx=L/M;          %sample interval (m) 
8 x=-L/2:dx:L/2-dx;  %x coordinates 
9 y=x;               %y coordinates 
10 [X,Y]=meshgrid(x,y);   %X and Y grid coords 
11 g=rect(X/(2*wx)).*rect(Y/(2*wy)); %signal 

 
In this example, a 0.2  0.1 m rectangle is modeled in a 200  200 element array 
corresponding to a physical size of 2  2 m. The side length L is the physical 
length along one edge of the array where it is assumed that the x and y 
dimensions are the same. Two identical sample coordinate vectors x and y are 
defined for the two dimensions. The “meshgrid” command generates the 
coordinate arrays X and Y (capital letters) where the rows of X are copies of the 
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vector x and the columns of Y are copies of y. X and Y are used to produce the 
sampled version of the 2D rect function in the array g. By using X and Y, the 
coded version of g appears much like an analytic expression. 

An image is a common way to visualize optics simulation results. To display 
the contents of g as an image, add the following: 
 

12 figure(1) 
13 imagesc(x,y,g);    %image display 
14 colormap('gray');  %linear gray display map 
15 axis square;       %square figure 
16 axis xy            %y positive up 
17 xlabel('x (m)'); ylabel('y (m)'); 

 
The command “imagesc” scales the array data to the full display range and 
presents the image and “colormap” provides a pseudo-coloring of the image. 
The “gray” scale is used here, but check Help for other colormaps. The “axis 
square” command presents the figure border as a square rather than the default 
rectangular shape. This is helpful in this case where the side length is the same in 
the x and y directions. The first row of a conventional image file corresponds to 
the top of the picture. MATLAB image display functions assign y-axis values to 
increase from top to bottom. The axis xy command arranges the y axis to be 
displayed with increasing values from bottom to top. Running the script produces 
the image shown in Fig. 3.10(a). 

It is also often helpful to view 1D “slices,” or profiles, of 2D results. Add the 
following code to generate a 1D profile of the x-axis through the center of the 
array [Fig. 3.10(b)], where the syntax (M/2+1,:)selects the M/2+1 row: 
 

18 figure(2) 
19 plot(x,g(M/2+1,:)); %x slice profile 
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Figure 3.10 (a) Image and (b) x profile of 2D rectangle example. 
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20 xlabel('x (m)'); 
21 axis([-1,1,0,1.2]); 

 
To perform a  2D FFT of the rectangle function, add the following: 

 
22 g0=fftshift(g);     %shift 
23 G0=fft2(g0)*dx^2;   %2D fft and dxdy scaling 
24 G=fftshift(G0);     %center 
25  
26 fx=-1/(2*dx):1/L:1/(2*dx)-(1/L);%x freq coords 
27 fy=fx;              %y freq coords 

 
The fftshift command operates on a 2D array in the manner described in 
Section 2.4 and the fft2 command is needed for a 2D transform. Enter the 
following code to display the magnitude of the transform results as a surface plot 
along with a profile slice through the center (Fig. 3.11): 
 

28 figure(3) 
29 surf(fx,fy,abs(G))  %display transform magnitude 
30 camlight left; lighting phong 
31 colormap('gray') 
32 shading interp 
33 ylabel('fy (cyc/m)'); xlabel('fx (cyc/m)'); 
34  
35 figure(4) 
36 plot(fx,abs(G(M/2+1,:))); %fx slice profile 
37 title('magnitude'); 
38 xlabel('fx (cyc/m)'); 

 
The “surf” plotting command is introduced to illustrate another display method 
for a 2D array. The lighting, shading, and colormap commands can be 
used to change the display. The magnitude could also be displayed in other ways, 
such as an image or a contour plot. The phase of the result is not shown here, but 
it could also be displayed in a variety of ways. 

3.8 Miscellaneous Hints 

A few other helpful MATLAB hints: 
 
 Clear all: MATLAB retains the values of variables and arrays that are created 

when a script is executed. Typing a variable name in the Command Window 
and hitting enter displays the current value, which can be useful for analyzing 
your code. However, sometimes this gets confusing as code is being edited. 
The clear all command clears the variable memory. 

 Close all: This command will close all the current figure windows. 
 Display complex result: Sometimes a plot or image will not display and the 

error warning says the input is complex. After operations, like taking 
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Figure 3.11 (a) Surface plot display and (b) profile of 2D FFT magnitude result. 
 

the FFT, machine precision can leave some residual complex component in a 
vector or array that should be real. The real or abs functions can be 
applied to the array to allow the plot to display. 

 Image contrast: The display function imagesc is used extensively 
throughout this book. For printing purposes the images are displayed in 
grayscale. However, it is easier to see low-value features with different 
colormaps—so try some other maps. To stretch the contrast of a grayscale 
image to more easily see dim features, a quick trick is to display the nth root 
of the image values. For example, nthroot(g,3) takes the third root of g. 
The higher the root, the more the contrast is stretched. Just be sure to 
remember that you are looking at a peak-scaled, contrast-stretched image. 

 Vector operations: Pay special attention to vectorized operations indicated 
with the period—for example, an element-by-element multiplication 
indicated by A.*B. The most common programming error is to forget the 
period when a vectorized operation is needed. This mistake generally does 
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not create an error message, but the result will be unexpected. Make a habit 
of checking the vector operations when things are going wrong. 

  2D transform: Be sure and use fft2 and ifft2 for two dimensions—not 
fft and ifft. The 1D functions operating on the 2D array tend to give a 
repeated 1D result (it looks “striped”)—which is not good! 

3.9 Exercises 

3.1  Triangle function M-file: 

(a) Create a triangle function in an M-file. Try some lines like: 

     T=1-abs(x); 
     ask=abs(x)<=1; 
     out=T.*mask; 

(b) In a script, create a sampled triangle function using the following 
specifications: triangle base half width = 0.1 m, vector length = 2 m, 
and number of samples M = 200. 

(c) Plot the sampled function. 

(d) Compute the FFT. 

(e) Find the analytic Fourier transform of the function in (b). 

(f) Plot the FFT and analytic Fourier transform results together (both 
magnitude and phase). 

 
3.2 Code the example for the convolution of the Gaussian functions presented in 

Section 3.6. Find the analytic convolution of these functions and compare 
this result with the discrete result in a plot. 

 
3.3 Circle function M-file: 

(a) Create a circle function in an M-file. 

(b) Generate a sampled circle function in a 2D array with the following 
parameters: circle radius = 0.015 m, array side length = 0.2 m, and 
number of samples (one dimension) M = 200. 

(c) Display the sampled function as an image. 

(d) Take the FFT of the array and display the magnitude of the transform 
in surface and profile plots. 
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Chapter 4 

Scalar Diffraction and 
Propagation Solutions 
 
 
Perhaps the most fundamental task associated with Fourier optics is describing 
the evolution of an optical field as it propagates from one location to another. 
The phenomenon of diffraction underlies the behavior of propagating waves. 
Extensive theory developed for diffraction provides the basis for modeling 
optical propagation on the computer. This chapter is essentially a summary of 
scalar diffraction theory with a listing of the expressions commonly used today to 
describe optical diffraction of monochromatic light. The presentation closely 
follows the diffraction development by Goodman.1 More details can be found in 
that reference, as well as others.2–4 This chapter sets the stage for the computer 
methods of simulating optical propagation described in Chapter 5. 

4.1 Scalar Diffraction 

Diffraction refers to the behavior of an optical wave when its lateral extent is 
confined; for example, by an aperture. It accounts for the fact that light rays do 
not follow strictly rectilinear paths when the wave is disturbed on its boundaries. 
In our everyday experience we rarely notice diffractive effects of light. The 
effects of reflection (from a mirror), or refraction (due to a lens) are much more 
obvious. In fact, the effects of diffraction become most apparent when the 
confinement size is on the order of the wavelength of the radiation. Nevertheless, 
diffraction plays a role in many optical applications and it is a critical 
consideration for applications involving high resolution, such as astronomical 
imaging, or long propagation distances such as laser radar, and in applications 
involving small structures such as photolithographic processes. 

The propagation behavior of an optical wave is fundamentally governed by 
Maxwell’s equations. In general, coupling exists between the wave’s electric 

field E


 with components (Ex, Ey, Ez) and its magnetic field H


 with components 
(Hx, Hy, Hz). There is also coupling between the individual components of the 
electric field, as well as between the magnetic components. However, consider a 
wave that is propagating in a dielectric medium that is linear (field quantities 
from separate sources can be summed), isotroptic (independent of the wave 
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polarization, i.e., the directions of E


and H


), homogeneous (permittivity of the 
medium is independent of position), nondispersive (permittivity is independent of 
wavelength), and nonmagnetic (magnetic permeability is equal to the vacuum 
permeability). In this case, Maxwell’s vector expressions become decoupled, and 
the behavior of each component of the electric or magnetic fields can be 
expressed independently from the other components. Scalar diffraction refers to 
the propagation behavior of light under this ideal situation.  

The long list of assumptions for the medium suggests a rather limited 
application regime for scalar diffraction theory. However, scalar diffraction can 
clearly be used for describing free-space optical (FSO) propagation, which refers 
to transmission through space or the atmosphere and encompasses a huge number 
of interesting applications such as lidar, imaging, and laser communications. 
Furthermore, for many problems involving less benign propagation media, scalar 
solutions can provide a reasonable approximation of the principle effects of the 
propagation and establish a basis for comparison with full vector results. All of 
the developments and applications in this book assume scalar diffraction. 

4.2 Monochromatic Fields and Irradiance 

Some terminology and definitions related to optical fields are needed at this 
point. A monochromatic (single-frequency) scalar field propagating in an 
isotropic medium can be expressed as 
 
  ( , ) ( )cos 2π ( )u P t A P t P   , (4.1) 

 
where A(P) is the amplitude and (P) is the phase at a position P in space (x, y, z 
coordinates) and  is the temporal frequency. This expression models a 
propagating transverse optical (electric) field of a single polarization. 

Monochromatic light provides the basis for our analytic and computer 
simulation approaches to diffraction theory. A truly monochromatic light source 
is also coherent. Coherence refers to the correlation of the optical field phase at 
two different points in the field separated by time and/or space and enables the 
formation of interference in a time-averaged sense. Although some lasers can 
produce near-monochromatic radiation, true monochromatic light is 
unachievable. But, as will be discussed in Chapters 7 and 9, the extension of 
monochromatic results to polychromatic radiation, as well as partially coherent 
and incoherent radiation, can be straightforward in many useful cases 
(…fortunately!). 

To give an example, a specific form of Eq. (4.1) corresponding to a plane 
wave propagating in the z direction would be 
 
  ( , ) cos 2πu z t A t kz  , (4.2) 

 
where the wavenumber k is defined as 
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2π

k


 , (4.3) 

 
and where  is the vacuum wavelength. Also,  = c/, where c is the speed of 
light in vacuum. This wave has no dependence on x and y and, therefore, is 
interpreted as extending infinitely in these directions. 

If the field in Eq. (4.1) is propagating in a linear medium (assumed for scalar 
diffraction), the temporal frequency of the resulting field will remain unchanged; 
so, it is not necessary to explicitly carry the temporal term. Furthermore, 
substituting a complex phasor form for the cosine function provides a valid 
propagation result and aids in mathematical manipulation. These changes lead to 
a function that simply describes the spatial distribution of the field 
 
  )(exp)()( PjPAPU  . (4.4) 
 
This complex phasor form of the optical field will be used extensively in our 
analytic and simulation developments. As an example, the phasor form of Eq. 
(4.2) is 
 
  jkzAzU exp)(  . (4.5) 
 
The descriptions in Eqs. (4.1) and  (4.4) are related by 
 

   ( , ) Re ( )exp 2πu P t U P j t  , (4.6) 

 
where Re indicates the real part and the complex phasor exp( 2π )j t is 
introduced for the temporal component of the field. To further refine Eq. (4.4), 
the explicit dependence on the z position can be removed, where z is assumed to 
be the fundamental propagation direction. Thus, 
 
   yxjyxAyxU ,exp),(),( 111  , (4.7) 
 
indicates the field in the x–y plane is located at some position “1” on the z axis.  

Detectors do not currently exist that can follow the extremely high-frequency 
oscillations (>1014 Hz) of the optical electric field. Instead, optical detectors 
respond to the time-averaged squared magnitude of the field. So, a quantity of 
considerable interest is the irradiance, which is defined here as 
 

     2

1111 ),(,,),( yxUyxUyxUyxI   . (4.8) 

 
Irradiance is a radiometric term for the flux (watts) per unit area falling on the 
observation plane. It is a power density quantity that in other laser and Fourier 
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optics references is often called “intensity.” Expression (4.8) actually represents a 
shortcut for determining the time-averaged square magnitude of the field and is 
valid when the field is modeled by a complex phasor. 

On a bookkeeping note, since A1(x,y) is the electric field amplitude, with 
typical units of volt/m, then to yield the corresponding irradiance value with units 
of watt/m2 the right side of Eq. (4.8) needs to be multiplied by the constant 1/(2) 
where  is the characteristic impedance of the medium ( = 377 , for vacuum). 
Since we are most interested in the relative spatial form of the field, this constant 
is usually dropped in our discussions. 

4.3 Optical Path Length and Field Phase Representation 

The refractive index n of a medium is the ratio of the speed of light in vacuum to 
the speed in the medium. For example, a typical glass used for visible light might 
have an index of about 1.6. For light propagating a distance d in a medium of 
index n, the optical path length (OPL) is defined as  
 
 ndOPL . (4.9) 
 

The OPL multiplied by the wavenumber k shows up in the phase of the 
complex exponential used to model the optical field. Think of k as the 
“converter” between the distance spanned by one wavelength and 2 rad of the 
phase. For example, in the plane-wave expression of Eq. (4.2), z is the OPL, 
where the propagation is assumed to be in vacuum; so, n = 1. The term kz gives 
the number of radians the sinusoid phase of the field has progressed over this 
distance. Sinusoids or complex exponentials are modulo 2 entities; so, only the 
relative phase between 0 and 2 has meaning. If the plane wave propagates a 
distance d through a piece of glass with index n, then the OPL is as indicated in 
Eq. (4.9), and the field phasor representation is 
 
  jkndAdU exp)(  . (4.10) 
 
In effect, the wavelength shortens to /n in the glass. There are other variations 
of this theme; for example, exp(jkr), where r is a radial distance in vacuum. 

Phasor forms associated with the optical field can also be a function of 
transverse position x and y; for example, 
 

  



  22

2
exp yx

z

k
j . (4.11) 

 
This is known as a “chirp” term (see Appendix A) and indicates a field phase 
change as the square of the transverse position. This type of term appears in a 
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Figure 4.1 x-axis phase profile of the chirp function in Eq. (4.11). 

 
variety of situations to model a contracting or expanding optical field. An 
example 1D profile of the phase of Eq. (4.11) is plotted in Fig. 4.1. 

An important concept is leading and lagging phase. The temporal phasor 
exp( 2π )j t defined in Eq. (4.6) indicates that the phase of the optical field 
becomes more negative as time progresses. Therefore, we say the phase in the 
center of the profile in Fig. 4.1 leads the rest of the function since it has the 
“most negative” value. The further away from the center, the more the phase 
lags. Interpreting the phase as a representation of an optical wavefront, the center 
of the wave crest in Fig. 4.1 leads the edges, and the wave can be imagined to be 
“propagating downward” in Fig. 4.1. Further physical interpretation of the optical 
phase is discussed in Section 5.3. 

4.4 Analytic Diffraction Solutions 

4.4.1 Rayleigh–Sommerfeld solution I 

Consider the propagation of monochromatic light from a 2D plane (source plane) 
indicated by the coordinate variables  and  (Fig. 4.2). At the source plane, an 
area  defines the extent of a source or an illuminated aperture. The field 
distribution in the source plane is given by U1(, ), and the field U2(x, y) in a 
distant observation plane can be predicted using the first Rayleigh–Sommerfeld 
diffraction solution 
 

                  
 12

2 1 2
12

exp
( , ) ( , ) .

jkrz
U x y U d d

j r
   




   (4.12) 

 
Here,  is the optical wavelength; k is the wavenumber, which is equal to 2/ 
for free space; z is the distance between the centers of the source and observation 
coordinate systems; and r12 is the distance between a position on the source plane 
and a position in the observation plane.  and  are variables of integration, and 
the integral limits correspond to the area of the source . With the source and 
observation positions defined on parallel planes, the distance r12 is 
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    222
12   yxzr . (4.13) 

 
Expression (4.12) is a statement of the Huygens–Fresnel principle. This principle 
supposes the source acts as an infinite collection of fictitious point sources, each 
producing a spherical wave associated with the actual source field at any position 
(, ). The contributions of these spherical waves are summed at the observation 
position (x, y), allowing for interference. The extension of Eqs. (4.12) and (4.13) 
to nonplanar geometries is straightforward; for example, involving a more 
complicated function for r, but the planar geometry is more commonly 
encountered, and this is our focus here. 

Expression (4.12) is, in general, a superposition integral, but with the source 
and observation areas defined on parallel planes, it becomes a convolution 
integral, which can be written as 
 
  2 1( , ) ( , ) ,U x y U h x y d d        , (4.14) 

 
where the general form of the Rayleigh–Sommerfeld impulse response is 
 

 

 
2

exp
),(

r

jkr

j

z
yxh


 , (4.15) 

 
and 
 

 222 yxzr  .  (4.16) 

 
The Fourier convolution theorem is applied to write Eq. (4.14) as 
 
     ),(),(),( 1

1
2 yxhyxUyxU   .  (4.17) 

 
For this convolution interpretation the source and observation plane variables are 
 

 

Figure 4.2 Propagation geometry for parallel source and observation planes. 
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simply re-labeled as x and y. An equivalent expression for Eq. (4.17) is 
 
   ),(),(),( 1

1
2 YX ffHyxUyxU   , (4.18) 

 
where H is the Rayleigh–Sommerfeld transfer function given by 
 

     




  221exp),( YXYX ffjkzffH  . (4.19) 

 

Strictly speaking, /122  YX ff  must be satisfied for propagating field 

components. An angular spectrum analysis is often used to derive Eq. (4.19). 
The Rayleigh–Sommerfeld expression is the most accurate diffraction 

solution considered in this book. Other than the assumption of scalar diffraction, 
this solution only requires that r >> , the distance between the source and the 
observation position, be much greater than a wavelength. 

 

4.4.2 Fresnel approximation 

The square root in the distance terms of Eq. (4.13) or (4.16) can make analytic 
manipulations of the Rayleigh–Sommerfeld solution difficult and add execution 
time to a computational simulation. By introducing approximations for these 
terms, a more convenient scalar diffraction form is developed. Consider the 
binomial expansion 
 

  2

8

1

2

1
11 bbb , (4.20) 

 
where b is a number less than 1, then expand Eq. (4.13) and keep the first two 
terms to yield 
 

 

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
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
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
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


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 


22
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1
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1
1

z
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z
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zr


. (4.21) 

 
This approximation is applied to the distance term in the phase of the exponential 
in Eq. (4.12), which amounts to assuming a parabolic radiation wave rather than 
a spherical wave for the fictitious point sources. Furthermore, use the 
approximation r12  z in the denominator of Eq. (4.12) to arrive at the Fresnel 
diffraction expression:1  
 

 
     


ddyx

z

k
jU

zj

e
yxU

jkz

 





  22

12 2
exp),(),( . (4.22) 
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This expression is also a convolution of the form in Eq. (4.14), where the impulse 
response is  
 

  



  22

2
exp),( yx

z

jk

zj

e
yxh

jkz


, (4.23) 

 
and the transfer function is 
 

  2 2( , ) exp πjkz
X Y X YH f f e j z f f    . (4.24) 

 
The expressions in Eqs. (4.17) and (4.18) are again applicable in this case for 
computing diffraction results. 

Another useful form of the Fresnel diffraction expression is obtained by 
moving the quadratic phase term that is a function of x and y outside the 
integrals: 
 

 

   

2 2
2

2 2
1

exp( )
( , ) exp

2

2π
( , ) exp exp .

2

jkz k
U x y j x y

j z z

k
U j j x y d d

z z



       


    
               

  
 

 (4.25) 
 
Along with the amplitude and chirp multiplicative factors out front, this 
expression is a Fourier transform of the source field times a chirp function where 
the following frequency variable substitutions are used for the transform: 
 

 
z

y
f

z

x
f

   , . (4.26) 

 
The accuracy of the Fresnel expression when modeling scalar diffraction at 

close ranges suffers as a consequence of the approximations involved. By 
allowing a 1 rad maximum phase change [due to dropping the terms b2/8 and 
above in the series of Eq. (4.20)], the following condition is derived: 
 

    2 23 2

max

π

4
z x y 


        

, (4.27) 

 
where the “max” notation indicates the maximum value that is of interest for a 
given source and observation plane geometry.  

The criterion of Eq. (4.27) provides a well-defined condition, where the 
Fresnel approximation can be applied with little loss of accuracy. However, for 
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fields in the source plane with little spatial variation, such as a simple aperture 
back-illuminated by a plane-wave, the Fresnel approximation can provide high 
accuracy even when Eq. (4.27) is violated. A looser criterion is the Fresnel 
number, which is commonly used for determining when the Fresnel expression 
can be applied. The Fresnel number is given by 
 

 z

w
N F 

2

 , (4.28) 

 
where w is the half width of a square aperture in the source plane, or the radius of 
a circular aperture, and z is the distance to the observation plane. If NF is less 
than  1 for a given scenario, then it is commonly accepted that the observation 
plane is in the Fresnel region, where the Fresnel approximations, typically, lead 
to useful results. However, for relatively “smooth” fields over the source 
aperture, the Fresnel expression can be applicable up to Fresnel numbers of even 
20 or 30. In a geometrical optics context, the Fresnel expression describes 
diffraction under the paraxial assumption, where only rays that make a small 
angle (< ~0.1 rad) relative to the optical axis are considered. 

4.4.3 Fraunhofer approximation 

Fraunhofer diffraction, which refers to diffraction patterns in a regime that is 
commonly known as the “far field,” is arrived at mathematically by 
approximating the chirp term multiplying the initial field within the integrals of 
Eq. (4.25) as unity. The assumption involved is  
 

 
max

22

2

)(







 


k
z , (4.29) 

 
and results in the Fraunhofer diffraction expression: 
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( , ) exp .

jkz k
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

     


    
       (4.30) 

 
The condition of Eq. (4.29), typically, requires very long propagation distances 
relative to the source support size. However, a form of the Fraunhofer pattern 
also appears in the propagation analysis involving lenses. The Fraunhofer 
diffraction expression is a powerful tool and finds use in many applications such 
as laser beam propagation, image analysis, and spectroscopy. 

Along with multiplicative factors out front, the Fraunhofer expression can be 
recognized simply as a Fourier transform of the source field with the variable 
substitutions  
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z

y
f

z

x
f

   , . (4.31) 

 
The Fraunhofer expression cannot be written as a convolution integral, so there is 
no impulse response or transfer function. But, since it is a scaled version of the 
Fourier transform of the initial field, it can be relatively easy to calculate, and as 
with the Fresnel expression, the Fraunhofer approximation is often used with 
success in situations where Eq. (4.29) is not satisfied. For simple source 
structures such as a plane-wave illuminated aperture, the Fraunhofer result can be 
useful even when Eq. (4.29) is violated by more than a factor of 10, particularly 
if the main quantity of interest is the irradiance pattern at the receiving plane. 
Using the Fresnel number NF, the commonly accepted requirement for the 
Fraunhofer region is NF  << 1.  

4.5 Fraunhofer Diffraction Example 

It is extremely difficult (impossible?) to find closed-form diffraction solutions 
using the Rayleigh–Sommerfeld expression for most apertures. The Fresnel 
expression is more tractable, but solutions are still complicated even for simple 
cases such as a rectangular aperture illuminated by a plane wave.1,2 So, Fresnel or 
Rayleigh–Sommerfeld calculations are left for the computer in the next chapter. 
Analytic Fraunhofer diffraction analysis is easier and, for our purposes, serves as 
a check on some of the computer results. 

Consider a circular aperture illuminated by a unit amplitude plane wave. The 
complex field immediately beyond the aperture plane is 
 

 











 

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1 circ),(

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To find the Fraunhofer diffraction field, the Fourier transform is taken as 
 

  
 2 2

1
2
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2π
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J w f f
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w f f

 

 
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
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

. (4.33) 

 
Then, with the substitutions in Eq. (4.31), and applying the leading amplitude and 
phase terms of Eq. (4.30), the field is found with 
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The irradiance, using Eq. (4.8), is  
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 (4.35) 

 
Some of the w/z terms could be canceled, but the symmetry of this form is 
helpful for programming.  

Let’s exercise MATLAB to display this irradiance pattern. Suppose w = 1 
mm and  = 0.633 m (He–Ne laser wavelength). The Fresnel number constraint 
requires w2/z < 0.1 or z > 10w2/, which leads to z > 15.8 m. We’ll use z = 50 m. 

Now to choose some mesh parameters. A good display size for the function 
is if the array side length is perhaps five times wider than the pattern’s central 
lobe. The Bessel function J1 has a first zero when the argument is equal to 1.22. 
If y = 0, then the first zero in the pattern occurs when 
 

 2π 1.22π
w

x
z

 . (4.36) 

 
Solve for x to get half the center lobe width and double this result to get the full 
width of the center lobe 
 

 1.22lobe

z
D

w


 . (4.37) 

 
We will choose L = 5  1.22z/w  0.2 m. 

Now for some code. It is helpful to first make a function that handles the 
Bessel function ratio. In a New M-file (named “jinc”) enter the following: 

 
1 function[out]=jinc(x); 
2 % 
3 % jinc function 
4 % 
5 % J1(2*pi*x)/x 
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6 % divide by zero fix 
7 % 
8 % locate non-zero elements of x 
9 mask=(x~=0); 
10 % initialize output with pi (value for x=0) 
11 out=pi*ones(size(x)); 
12 % compute output values for all other x 
13 out(mask)=besselj(1,2*pi*x(mask))./(x(mask)); 
14 end 

 
 This function evaluates J1(2x)/x. A masking approach is used to avoid the 
divide-by-zero condition when x = 0. The masking code may appear to be a 
roundabout way of doing things, but it allows the input x to be a vector or an 
array. In line 9, the array mask picks up the dimension of x and takes on a value 
of 1 for any element where x is nonzero (~= means ). In line 11, out is 
initialized with the dimension of x, ones fills the array with 1s, and  is the 
value of the function for x = 0. Then, logical indexing is applied—out(mask) 
and x(mask)—to evaluate the function for all elements where mask is 1. This 
leaves the value of  for x = 0. The MATLAB call besselj(1,…) is the 
Bessel function of the first kind, order 1. 

As with sinc functions, there are several definitions in the literature for “jinc” 
functions, and this book may be the only one that uses this particular variation. 
So beware, not all jinc functions are the same. Now for the Fraunhofer pattern. 
Name this file “fraun_circ”: 
 

1 %fraun_circ - Fraunhofer irradiance plot  
2  
3 L=0.2;          %side length (m) 
4 M=250;          %# samples 
5 dx=L/M;         %sample interval 
6 x=-L/2:dx:L/2-dx; y=x;  %coords 
7 [X,Y]=meshgrid(x,y); 
8  
9 w=1e-3;         %x half-width 
10 lambda=0.633e-6;%wavelength 
11 z=50;           %prop distance 
12 k=2*pi/lambda;  %wavenumber 
13 lz=lambda*z; 
14  
15 %irradiance 
16 I2=(w^2/lz)^2.*(jinc(w/lz*sqrt(X.^2+Y.^2))).^2; 
17  
18 figure(1)   %irradiance image 
19 imagesc(x,y,nthroot(I2,3)); 
20 xlabel('x (m)'); ylabel('y (m)'); 
21 colormap('gray'); 
22 axis square; 
23 axis xy; 
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 (a) (b) 
 

Figure 4.3 Fraunhofer irradiance (a) image pattern and (b) x-axis profile for a circular 
aperture. This is known as the Airy pattern. 

 
24  
25 figure(2)   %x-axis profile 
26 plot(x,I2(M/2+1,:)); 
27 xlabel('x(m)'); ylabel('Irradiance'); 

 
Here are a few comments on this routine with associated line numbers: 

(a) Line 6: The subscript 2 is left off the coordinate variables for 
simplicity. 

(b) Line 9: Scientific notation can be done several ways: e-3 and 10^-
3 mean the same thing. Don’t use the ^ symbol in the exponential e 
notation! 

(c) Line 16: jinc function is called. 
(d) Line 19: 3rd root is used to bring out the “rings” in the image 

display. 
 

Running the script produces the results in Fig. 4.3. The Fraunhofer pattern of a 
circular aperture is commonly known as the Airy pattern. The central core of this 
pattern, whose width is given in Eq. (4.37), is known as the Airy disk.  

4.6 Exercises 

4.1 Consider a plane wave of wavelength  incident on two pieces of glass of 
different thicknesses and refractive indices as shown in Fig. 4.4. Find an 
expression for the optical path (length) difference (OPD) for the two parts of 
the beam between planes a and b.  

4.2 For plane-wave illumination ( = 0.5 m) of an aperture of diameter 1 mm, 
determine the range of propagation distances that are adequate for the 
Rayleigh–Sommerfeld, Fresnel, and Fraunhofer diffraction regimes. 
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Figure 4.4 Plane wave propagation through two differing pieces of glass. 
 
 
4.3 Verify that the Fresnel transfer function is the Fourier transform of the 

Fresnel impulse response. 
 
4.4 Derive analytic expressions for the Fraunhofer field and irradiance patterns 

for the following apertures (shown in Fig. 4.5) illuminated with a unit 
amplitude plane wave. Plot the analytic Fraunhofer irradiance pattern images 
and profiles for the above apertures on the computer. Choose suitable 
propagation distances z and side lengths L in the observation plane. Use  = 
0.633 m and the following parameters: 

(a) wX = 0.1 mm, wY = 0.05 mm. 

 

 
 

Figure 4.5 Apertures: (a) rectangle, (b) circle with obsurations, and (c) pair of circles. 
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(b) w1 = 1 mm, w2 = 0.2 mm. 

(c) w = 1 mm, s = 4 mm. 
 

4.5 Suppose the plane-wave field incident on the aperture of Fig. 4.5(c) is 
attenuated by different amounts in passing through each hole. The field 
exiting one hole has a magnitude of A1 and the field exiting the other hole has 
a magnitude of A2. Find an analytic expression for the Fraunhofer irradiance 
for this aperture. Plot the irradiance pattern and profile (along the x-axis) for 
A1 = 1 and A2 = 0.4. [Hint: take squared magnitude before combining 
complex exponentials into a cosine term.]  
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Chapter 5 

Propagation Simulation 
 
 
Now we look at several implementations of the diffraction expressions of 
Chapter 4 to simulate optical propagation. Although the material is presented as a 
teaching exercise, these propagation methods are used extensively in research 
and industry for modeling laser beam propagation. The concentration is on 
methods that use the fast Fourier transform (FFT) and only monochromatic light 
will be considered here. When designing a simulation there are a variety of issues 
related to discrete sampling that need to be considered. We will get to that, but 
let’s first get our feet wet with some programming. 

5.1 Fresnel Transfer Function (TF) Propagator 

The Fresnel diffraction expression is often the approach of choice for 
simulations since it applies to a wide range of propagation scenarios and is 
relatively straightforward to compute. A common propagation routine is based on 
Eq. (4.18), which is repeated here for reference, 
 
   ),(),(),( 1

1
2 YX ffHyxUyxU   , (5.1) 

 
and uses the transfer function H given by 
 
   22exp),( YX

jkz
YX ffzjeffH   . (5.2) 

 
Start a New M-file and save it with name “propTF.” Enter the following 
function: 

 
1 function[u2]=propTF(u1,L,lambda,z); 
2 % propagation - transfer function approach 
3 % assumes same x and y side lengths and 
4 % uniform sampling 
5 % u1 - source plane field 
6 % L - source and observation plane side length 
7 % lambda - wavelength 
8 % z - propagation distance 
9 % u2 - observation plane field 
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10  
11 [M,N]=size(u1);           %get input field array size 
12 dx=L/M;                   %sample interval 
13 k=2*pi/lambda;            %wavenumber 
14  
15 fx=-1/(2*dx):1/L:1/(2*dx)-1/L; %freq coords 
16 [FX,FY]=meshgrid(fx,fx); 
17  
18 H=exp(-j*pi*lambda*z*(FX.^2+FY.^2));  %trans func 
19 H=fftshift(H);            %shift trans func  
20 U1=fft2(fftshift(u1));    %shift, fft src field 
21 U2=H.*U1;                 %multiply 
22 u2=ifftshift(ifft2(U2));  %inv fft, center obs field 
23 end 
 

This propagator function takes the source field u1 and produces the observation 
field u2 where the source and observation side lengths and sample coordinates 
are identical. Here are a few remarks on propTF with associated line numbers: 
 

(a) Line 11: The size function finds the sample dimensions for the 
input field matrix u1 (only M is used). This helps reduce the number 
of parameters passed to the propTF function. 

(b) Line 16: A line is saved by using fx twice in the meshgrid 
command since fy would be the same. 

(c) Line 18: The transfer function H of Eq. (5.2) is programmed, 
although the exp(jkz) term is ignored. This term doesn’t affect the 
transverse spatial structure of the observation plane result. 

(d) Line 19: H is created in the array center but is shifted (fftshift) 
before the FFT.  

(e) Line 20: Similarly, the source field u1 is assumed to be in the array 
center; so, fftshift is applied before the 2D FFT is computed. 

(f) Line 21: U1 is multiplied “pointwise” by the transfer function H and 
the inverse FFT is computed to complete the convolution. 

(g) Line 22: Finally, ifftshift centers u2 for display. 
 

Note that lower case u is used for the spatial field and upper case U is used 
for Fourier domain quantities, which is not consistent with the use of upper case 
for the analytic spatial fields; for example, in Eq. (5.1). But what can you do? 
Both are established notations, so we live with a little notational mixing. 

Before we exercise this function, let’s look at another method to simulate 
propagation.  

5.2 Fresnel Impulse Response (IR) Propagator 

A propagation approach can be devised based on Eq. (4.17), which is repeated 
here: 
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     ),(),(),( 1
1

2 yxhyxUyxU   . (5.3) 
 
The impulse response h is given by 
 

  




  22

2
exp),( yx

z

jk

zj

e
yxh

jkz


. (5.4) 

 
Even though Eqs. (5.1) and (5.3) represent identical analytical operations, with 
discrete sampling and transforms, the transfer function and impulse response 
approaches can yield different results.  

For making the impulse response propagator, some typing can be saved by 
starting with a copy of propTF. For example, with propTF in the Editor, click on 
“File” on the MATLAB desktop window, select “Save As,” edit the file name to 
be propIR, and click “Save.” The new copy is now ready to be edited (carefully) 
to match the following: 
 

1 function[u2]=propIR(u1,L,lambda,z); 
2 % propagation - impulse response approach 
3 % assumes same x and y side lengths and 
4 % uniform sampling 
5 % u1 - source plane field 
6 % L - source and observation plane side length 
7 % lambda - wavelength 
8 % z - propagation distance 
9 % u2 - observation plane field 
10  
11 [M,N]=size(u1);           %get input field array size 
12 dx=L/M;                   %sample interval 
13 k=2*pi/lambda;            %wavenumber 
14  
15 x=-L/2:dx:L/2-dx;         %spatial coords 
16 [X,Y]=meshgrid(x,x); 
17  
18 h=1/(j*lambda*z)*exp(j*k/(2*z)*(X.^2+Y.^2)); %impulse 
19 H=fft2(fftshift(h))*dx^2; %create trans func 
20 U1=fft2(fftshift(u1));    %shift, fft src field 
21 U2=H.*U1;                 %multiply 
22 u2=ifftshift(ifft2(U2));  %inv fft, center obs field 
23 end 

 
This code is quite similar to the propTF function. Again, the source and 
observation planes in this approach have the same side length. Some specific 
remarks for propIR are as follows: 
 

(a) Line 18: h is implemented, and the FFT is applied to get H. 
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(b) Line 19: Note the multiplier dx^2 for H. The FFT of u1 and FFT−1 of U2 
take care of each other’s scaling, but the FFT of h needs its own scaling. 

 
Due to computational artifacts, the IR approach turns out to be more limited in 
terms of the situations where it should be used than the TF approach, however, it 
provides a way to simulate propagation over longer distances and is useful for the 
discussion of simulation limitations and artifacts. 

5.3 Square Beam Example 

Now it is time to try out the TF and IR propagators. Consider a source plane with 
dimensions 0.5 m × 0.5 m (L1 = 0.5 m). Start a New M-file and use the name 
“sqr_beam.” Enter the following: 
 

1 % sqr_beam propagation example 
2 % 
3 L1=0.5;               %side length 
4 M=250;                %number of samples 
5 dx1=L1/M;             %src sample interval 
6 x1=-L1/2:dx1:L1/2-dx1; %src coords 
7 y1=x1; 

 
Variables with “1” are source plane quantities. The source and observation plane 
side lengths are the same for the TF and IR propagators, i.e., L1 = L2 = L, but this 
is not true for other propagators, so the variable L1 is retained here. The code 
sets up 250 samples across the linear dimension of the source plane, and the 
sample interval dx1 works out to be 2  10−3 m (2 mm). 

Assume a square aperture with a half width of 0.051 m (51 mm) illuminated 
by a unit-amplitude plane wave from the backside, where  = 0.5 m. The 
simulation, therefore, places 51 samples across the aperture, which provides a 
good representation of the square opening (see Section 2.2). Add the following 
code: 

 
8 lambda=0.5*10^-6;     %wavelength 
9 k=2*pi/lambda;        %wavenumber  
10 w=0.051;              %source half width (m) 
11 z=2000;               %propagation dist (m) 
12  
13 [X1,Y1]=meshgrid(x1,y1); 
14 u1=rect(X1/(2*w)).*rect(Y1/(2*w)); %src field 
15 I1=abs(u1.^2);        %src irradiance 
16 % 
17 figure(1) 
18 imagesc(x1,y1,I1); 
19 axis square; axis xy; 
20 colormap('gray'); xlabel('x (m)'); ylabel('y (m)'); 
21 title('z= 0 m'); 
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Figure 5.1 Source plane irradiance for sqr_beam propagation simulation. 

 
The propagation distance z is 2000 m, so the Fresnel number for this case is NF = 
w2/z = 2.6, which is reasonable for applying the Fresnel expression. The source 
field is defined in the array u1. The irradiance is found by squaring the absolute 
value of the field. Executing this script generates Fig. 5.1, which verifies the 
source plane arrangement. 

The next part of the script is where the propagation takes place. Add the 
following: 
 

22 u2=propTF(u1,L1,lambda,z); %propagation 
23  
24 x2=x1;                %obs coords   
25 y2=y1; 
26 I2=abs(u2.^2);        %obs irrad 
27  
28 figure(2)             %display obs irrad 
29 imagesc(x2,y2,I2); 
30 axis square; axis xy; 
31 colormap('gray'); xlabel('x (m)'); ylabel('y (m)'); 
32 title(['z= ',num2str(z),' m']); 
33 % 
34 figure(3)             %irradiance profile 
35 plot(x2,I2(M/2+1,:)); 
36 xlabel('x (m)'); ylabel('Irradiance'); 
37 title(['z= ',num2str(z),' m']); 
38 % 
39 figure(4)             %plot obs field mag 
40 plot(x2,abs(u2(M/2+1,:))); 
41 xlabel('x (m)'); ylabel('Magnitude'); 
42 title(['z= ',num2str(z),' m']); 
43 % 
44 figure(5)             %plot obs field phase 
45 plot(x2,unwrap(angle(u2(M/2+1,:)))); 
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46 xlabel('x (m)'); ylabel('Phase (rad)'); 
47 title(['z= ',num2str(z),' m']); 

 
Observation plane parameters are indicated with a “2.” In lines 24 and 25, the 
observation coordinates are set equal to the source coordinates since this is 
consistent with the operation of propTF. Lines 28–47 contain code to display an 
image of the observation plane irradiance as well as irradiance and field 
magnitude and phase profiles. The num2str function (line 47) is introduced to 
display the propagation distance in the plot title. The use of the unwrap function 
for the phase profile display (line 45) is discussed in the next few paragraphs. 

Execute sqr_beam. The irradiance results are shown in Fig. 5.2, where the 
constructive and destructive interference of the coherent light, brought on by 
diffraction, results in peaks that have greater irradiance than the initial source 
value (1). The peaks are offset by valleys with less irradiance. Also apparent in 
the profile plot is a spread of the light into “wings” that exceed the initial width 
of the source rectangle. 

The field magnitude and phase are shown in Fig. 5.3. The phase is in units of 
radians. The function unwrap, introduced for displaying the phase, adds 
multiples of ± 2 when jumps between consecutive samples are greater than . 
This serves to remove the discontinuous skips that appear in the modulo-2 
formatted phase function and helps the underlying form of the phase to be seen. 
Remove the unwrap command to see what the phase looks like with modulo-2 
jumps. 

In other words, Fig. 5.3(b) is representative of a slice through the surface of 
the constant phase for the optical wave at the observation plane. The important 
physical interpretation is that it represents the shape of the optical wavefront at 
the observation plane. Recall that the field temporal phasor, defined as 
exp( 2π )j t in Eq. (4.6), is such that as time increases the phase becomes more 
negative. Therefore, the wavefront profile in Fig. 5.3(b), which is bowl shaped 
with a flattened center, can be thought of as progressing “downward” as time 
carries on. Furthermore, imagine rays projecting normal from the wavefront 
surface to get an idea of where the energy along the wavefront is headed. The 
magnitude plot in Fig. 5.3(a) shows that most of the field magnitude is 
concentrated near the flattened center of the wavefront and the phase indicates 
much of that energy is still headed normal to the observation plane. 

Now try the impulse response IR propagator. Change line 22 to 
 

 u2=propIR(u1,L1,lambda,z); %propagation 
 
and run sqr_beam. The results in this case should be identical to those in Figs. 
5.2 and 5.3.  
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Figure 5.2 Observation plane irradiance (a) pattern and (b) profile. 
 

-0.2 -0.1 0 0.1 0.2
0

0.5

1

x (m)

M
ag

ni
tu

de

z= 2000 m

 

-0.2 -0.1 0 0.1 0.2

-100

-50

0

x (m)

P
ha

se
 (

ra
d)

z= 2000 m

 
 (a) (b) 

 

Figure 5.3 Observation plane (a) magnitude and (b) phase profiles. 
 

5.4 Fresnel Propagation Sampling 

5.4.1 Square beam example results and artifacts 

Now for the bad news. Discrete sampling of the source field, sampling of the 
transfer function or impulse response, and the periodic nature of the FFT can lead 
to a variety of artifacts in the propagation result. Much of the trouble comes 
because the chirp functions on the right side of Eqs. (5.2) and (5.4) are not 
bandlimited and cannot be adequately sampled. This issue is introduced here with 
some example results. 

In Fig. 5.4 both propTF and propIR results are shown for the sqr_beam 
routine at propagation distances ranging from 1000 to 20,000 m. At the distance 
of 1000 m the TF result appears reasonable with some constructive/destructive 
interference features and slight spreading beyond the initial aperture width. On 
the other hand, the IR result exhibits periodic copies of the pattern. At 2000 m 
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Figure 5.4 Irradiance profiles (x axis) for the transfer function (TF) and impulse response 
(IR) propagation approaches for propagation distances ranging from 1000 to 20,000 m. 
“Spiky” and “stair-step” artifacts appear in (c) and (d); periodic copies appear in (e); and 
spurious sidelobes appear in (h). 
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the TF and IR results are essentially identical. At 4000 m the TF result displays 
some “ticks” in the profile that are absent from the IR result. For 20,000 m the 
TF profile has a “stair-step” appearance that is clearly an artifact. The IR result is 
smooth. At longer distances the irradiance pattern is predicted by Fraunhofer 
theory to take on a sinc2 form. This generally appears to be the case for Fig. 
5.4(h). Corresponding irradiance patterns are shown in Fig. 5.5. 
 

5.4.2 Sampling regimes and criteria 

It turns out that Figs. 5.4(c)–(e) and 5.5(c)–(e) display significant artifacts related 
to discrete sampling. In this section we examine criteria used to predict when 
there will be problems. For more details on these and other criteria, see Appendix 
A and References 1 and 2 in this chapter (and A). 

An obvious first criterion is that the support of the source field should “fit” 
within the numerical array. If D1 is the effective support of the source field 
(maximum linear width) and L is the array side length, then we usually require 
 
 LD 1 . (5.5) 
 
It is good practice to provide a “guard area” around the source function, for 
example, L  2D1 or 3D1. This helps reduce artifacts at the edges of the array 
after propagation due to the periodic extension properties of the FFT.  

Further criteria are derived by considering the effects of sampling the chirp 
functions in the Fresnel transfer function H and impulse response h expressions 
(Appendix A). The H chirp, given as 2 2exp[ π ( )]X Yj z f f  , is adequately 
sampled (oversampled) when 

 
L

z
x


 . (5.6) 

 
This relationship is derived by considering aliasing of the chirp function in the 
frequency domain and then converting to the sampled space domain (Appendix 
A). The h chirp, given as )]()2(exp[ 221 yxzjk  , is oversampled when 
 

 
L

z
x


 . (5.7) 

 
Expressions (5.6) and (5.7) reveal that the oversampling criteria for the transform 
pair H and h are opposite. Oversampling is a good thing, in general. If Eq. (5.6) 
or (5.7) is violated, an aliased representation of the phase of these respective 
chirp functions is created that leads to simulation artifacts. Both conditions are 
only satisfied when 
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Figure 5.5 Irradiance patterns for the transfer function (TF) and impulse response (IR) 
propagation approaches corresponding to the profiles in Fig. 5.4. 
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L

z
x


 , (5.8) 

 
which we call the critical sampling condition. 
 Table 5.1 lists the three regimes defined by over-, under-, or critical sampling 
of the phase term in the H or the h functions. For each regime, a criterion is 
described that involves the source field bandwidth B1. In practice, the source 
bandwidth criteria of Table 5.1 will never be satisfied because, as described in 
Section 2.2, a source with finite support will have infinite bandwidth. So, an 
effective bandwidth B1 can be used when considering the criteria. Further 
comments on the sampling regimes are as follows: 
 

(a) Δx > λz/L:  The “short distance” regime. Here, the support size available 
in the observation plane is limited. For the TF approach the size of the 
field in the observation plane that can be represented accurately is 
roughly D1 + λz/Δx (see Appendix A). This limitation is usually  
not a problem, as the observation plane field is often negligible  
beyond the full width of D1 + λz/Δx. Thus, the TF 
  
Table 5.1 Propagator sampling regimes and sampling criteria. 
 

Regime 
Chirp 
phase 

sampling 

Source 
bandwidth 
criterion 

Approach Comments 

L

z
x


  

TF: Over 
IR: Under x

B



2

1
1  

TF: Preferred 
IR: Periodic copies 

Relatively “short” z or 
small  

Observation plane 
limitation 

TF: Observation plane 
field limited to full width 

xzD  /1   

L

z
x


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TF: Critical 
IR: Critical 

x
B


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2

1
1  

or 

z

L
B

21   

 

TF and IR 
identical 

Full use of array space 
and bandwidth allocation 

L

z
x


  

TF: Under 
IR: Over z

L
B

21   

TF: If bandwidth 
criterion essentially 
satisfied 
IR: Perhaps better 
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Note: x is the sample interval;  B1 is the source bandwidth;  is the wavelength; D1 is the 
support of the field in the source plane; and z is the propagation distance. 
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approach generally provides good results in this regime. The 
undersampled IR phase function has an aliased, periodic phase 
representation, and using this approach produces periodic copies of the 
field. The source bandwidth B1 is only limited in the usual way by the 
sampling theorem in the source plane. 

(b)  Δx = λz/L: This is the critical sampling situation where, remarkably, the 
sampled H and h functions as an FFT pair, turn out to have values that 
exactly match the analytic functions H and h (Appendix A). Under this 
condition the full bandwidth of the sampled array (1/2Δx) is available for 
modeling the source, and the full area of the array in the observation 
plane can be used. 

(c) Δx < λz/L: The “long distance” regime. Here, the bandwidth available for 
the source field becomes limited. The H chirp has an aliased phase form, 
where any significant source bandwidth that extends beyond L/(2λz) 
leads to artifacts using the TF approach. Applying the IR approach 
actually corresponds to windowing, or filtering the source frequency 
content beyond ~ L/(2λz). This leads to “smoother,” but not always 
accurate, results. 

 

5.4.3 Criteria applied to square beam example 

What do the criteria of the previous section predict for the sqr_beam example of 
Section 5.3.1? The source field for that example is given by 
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where w = 0.051 m. The source support is D1 = 2w = 0.102 m, which easily fits 
within the side length L = 0.5 m. This was illustrated in Fig. 5.1. To consider the 
criteria in Table 5.1, an estimate is needed for the source effective bandwidth. 
Referring to Section 2.2, a reasonable estimate for the effective bandwidth is 
 

 98
5

1 
w

B  cycles/m. (5.10) 

 
Table 5.2 presents pertinent sampling information for the four propagation 
distances in the sqr_beam example. Referring to Table 5.2 as well as Fig. 5.4, the 
following observations can be made: 
 

(a) z = 1000 m: H is oversampled by a factor of 2 relative to critical 
sampling. However, the observation plane size limitation has a 
negligable effect on the TF result [Fig. 5.4(a)], as the most significant 
part of the field fits within D1 + z/x = 0.352 m. The IR approach 
introduces periodic copies of the field separated by z/x [Fig. 5.4(e)]. 
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(b)  z = 2000 m: Critical sampling. The TF and IR results are identical [Figs. 
5.4(b) and (f)]. 

(c)  z = 4000 m: H is undersampled by a factor of 2. The source bandwidth 
limit for propagation is 125 cyc/m, which is slightly larger than the 
source effective bandwidth B1. Thus, most of the significant source 
spectrum obeys the criterion. But, small ticks still creep into the TF 
approach result [Fig. 5.4(c)]. On the other hand, artifacts are not apparent 
in the IR result [Fig. 5.4(h)]. 

(d) z = 20,000 m: H is undersampled by a factor of 10. The available 
bandwidth of 25 cycles/m is only a fourth of B1. Thus, the TF approach 
causes significant stair-step artifacts [Fig. 5.4(d)]. The IR approach 
actually suppresses source frequency components that lie beyond the 
available bandwidth. This gives a smoother result, but with the small, 
spurious sidelobes near the array edge [Fig. 5.4(h)]. 

 

5.4.4 Propagator accuracy 

How closely do the sqr_beam propagator examples follow the analytic Fresnel 
propagation result? Three particular cases are studied where the irradiance results 
appear to be “reasonable”: TF at z = 1000 m, TF at z = 2000 m, and IR at z = 
20,000 m. For comparison, an analytic result for a square aperture is available 
and is given by3 
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where C and S are known as the Fresnel integrals,  
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Table 5.2 Sampling regimes for the sqr_beam example. 

 

Z 
(m) Lx

z




 TF (H) 

sampling 
IR (h) 

sampling 

Available 

Observation plane 

size (m) 

Source 

bandwidth limit 

(cycles/m) 

1000 0.5 over under D1 + z/x = 0.352 1/2x = 250 
2000 1 critical critical L = 0.5 1/2x = 250 
4000 2 under over L = 0.5 L/2z = 125 
20,000 10 under over L = 0.5 L/2z = 25 

 

Note: x = 2 mm; L = 0.5 m;  = 0.5 m; N = 250; and D1 = 0.102 m. 
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and 
 

    1 2 / ,z w x         2 2 / ,z w x     

 

    1 2 / ,z w y        2 2 / .z w y    (5.13) 

 
Expression (5.11) was evaluated for the parameter values in the three propagator 
examples. Only the x-axis profile was considered (y = 0), and 2500 points were 
evaluated as opposed to 250 points in the simulation. The higher sample rate 
shows whether any spatial details are lost in the propagator results. A Fresnel 
integral routine was used to compute C and S. The MATLAB Symbolic Math 
Toolbox (available in the student edition package) has these functions, which are 
called “mfun('FresnelC',x)” and “mfun('FresnelS',x).” There are also 
other shared versions of Fresnel integral routines that are downloadable on the 
internet. 

In Fig. 5.6 the field magnitude and unwrapped phase at the observation plane 
are compared with the analytic profiles. The TF and IR propagator profiles are 
displayed with solid lines, and the analytic results are displayed with dashed 
lines. There is generally good consistence between the curves. Note the 
magnitude results are plotted on a log scale to emphasize the small differences in 
the wings of the profiles. Of course, these results are specific to the sqr_beam 
example, but they give an indication of the typical performance of the FFT 
propagators. The following are comments on the propagator/analytic 
comparisons: 

(a)  TF, z = 1000 m: The significant features of the magnitude profiles [Fig. 
5.6(a)] match, but smoothing is seen in the wings of the propagator result 
(the highly oscillating wings are the analytic result). The phase profiles 
[Fig. 5.6(b)] are nearly identical except at the edges of the array where 
the propagator phase slightly lags. D1+z/x = 0.352 m, which is roughly 
the apparent width of the magnitude curve before the propagator wings 
drop abruptly below the analytic curve. Overall, the propagator result 
appears quite accurate. The primary deviation is in the wings and is of 
little consequence. 

(b)  TF, z = 2000 m: The propagator magnitude curve [Fig. 5.6(c)] is nearly 
identical to the analytic curve, although the propagator curve is slightly 
elevated near the edge of the array as forced by periodic extension 
[difficult to see in Fig. 5.6(c)]. The phase profiles [Fig. 5.6(d)] are 
essentially identical. In this case critical sampling leads to an extremely 
close match with the analytic result. 

(c)  IR, z = 20,000 m: For this long-distance case, the IR propagator 
magnitude [Fig 5.6(e)] follows the integration result but exhibits the 
spurious lobes near the array edges. The propagator phase in Fig. 5.6(f) 
also has errors in the wings. A better result could be found by readjusting  
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Figure 5.6 Solid curves are magnitude and phase profiles (x axis) for the TF and IR 
propagation approaches for propagation distances of 1000, 2000, and 20,000 m; dashed 
curves are corresponding analytic results. 
 

the sampling parameters, but this irradiance pattern might be acceptable in a 
pinch.  
5.4.5 Sampling decisions 
Suggested steps for designing a propagation simulation are summarized in Table 
5.3. As mentioned previously, a field with finite support in the source plane  
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cannot be bandlimited, so the bandwidth criteria in Table 5.1 are never satisfied. 
However, the criteria can still be used to help find reasonable simulation 
parameters, although, it often becomes something of an art form to juggle 
sampling and field parameters to get a satisfactory propagation result. 

Critical sampling helps minimize artifacts by allowing full use of the array 
side length and sampling bandwidth. It seems prudent to try and use critical 
sampling, but maintaining this condition can be inconvenient. Consider that the 
critical sampling expression x = z/L can be rearranged to give 
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 , (5.14) 

 
which defines the critical sampling criterion in terms of the number of samples 
that span the array side length. For a given situation, the critical condition may 
dictate either too many samples for a practical FFT calculation or too few to 
adequately sample the source or observation planes. Other requirements can be at 
odds with the critical criterion. For example, phase screens used to simulate 
propagation through atmospheric turbulence have their own set of sample 
interval and array size conditions.2,4 The sampling criterion can always be 
maintained with the help of interpolation or decimation; however, extra 
computational steps add complexity and run time and still may not solve the 
practical issues of working with too many, or too few, samples. 

In practice, Step 3 in Table 5.3 is not always straightforward because it may 
not be simple to determine the effective bandwidth of the source. Sometimes the 
most expedient thing to do is make an “educated” guess at the sampling 
parameters and run a few trial simulations to see what happens. If there are signs 
of artifacts such as the stair-step or sidelobe features illustrated in Figs. 5.4 and 
5.5, then the simulation parameters need a closer look. 

5.4.6 Split-step simulation, windowing, and expanding grids 

Some of you might say, “Hey, wait! Let’s just break that long distance 
propagation problem into a sequence of shorter, better-behaved, TF propagations 
where each satisfies x  z/L.” But, alas, the result is the same whether a single 
TF propagation or a sequence of shorter TF propagations is used. This is because 
a succession of TF propagations is the same as applying the product of the 
transfer functions to the initial field. For example, if the distance zN is broken into 
a series of shorter distances, it is easy to show 
 
 );,()...;,();,();,( 1121  NNYXYXYXNYX zzffHzzffHzffHzffH , 
  (5.15) 
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Table 5.3 Propagation simulation design steps. 
 

(1) Consider source support: D1 < L by a factor of 2 or 3? 

(2) Determine sampling regime (Table 5.2). 

 x > z/L:  TF approach will often work well with some loss of 
observation plane support. 

 x = z/L: Critical sampling, TF approach, best use of bandwidth, 
and spatial support. 

 x < z/L: IR approach with loss of available source bandwidth, 
artifacts. 

(3) Consider source bandwidth criteria in Table 5.2. 

(4) Reconsider source sampling depending on bandwidth criteria and resulting 
artifacts. 

 
where the z arguments are understood to replace z in Eq. (5.2). So, even if the 
shorter propagations are critically sampled, the final result is the same as a single 
propagation! It is the total propagation distance that is important; however, split-
step simulations are applied in many situations for reasons such as propagating 
between a series of atmospheric turbulence phase screens. 

Previously, it was noted that the reason the IR approach behaved better for 
the long propagation example is that it effectively suppresses source frequency 
content where the frequency chirp function is going bad. In fact, the IR approach 
is mainly introduced to give a quick and relatively easy way to approach longer 
propagation distances. But there are other ways to handle this issue. Researchers 
working with laser beam propagation simulations also apply window functions to 
either suppress the source spectrum or remove energy in the wings of the source 
field. This, combined with multi-step propagation, can give good results. This 
subject is covered in more detail by Schmidt in reference 2. 

Suppose a simulation involves some fixed parameters in the source or 
observation planes such that a single side length and sample interval will not 
serve for modeling both planes. In this situation the ability to independently 
select the physical side lengths of the source and observation planes is helpful. 
The two-step method allows the source and observation plane side lengths to be 
different. This is described and analyzed in Appendix B. While it still suffers 
from some of the same sampling limitations described for the TF approach, it 
affords flexibility in the simulation design. 

5.5 Fraunhofer Propagation 

The expression for the Fraunhofer pattern is repeated here:  
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where, for coding purposes, the source plane variables are now indicated with the 
subscript 1 and the observation plane variables with subscript 2. When using the 
FFT to compute the Fraunhofer field, the source and observation plane side 
lengths are not generally the same. From Eq. (4.31), 
 
 21 xzf X  , (5.17) 
 
and using Eq. (2.17), the observation plane side length and sample interval are 
found in terms of the source plane parameters 
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So, the observation plane coordinates are given as 
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If critical sampling is used (x1 = z/L1), then (5.18) indicates that the side 
lengths will be equal, L2 = L1. Otherwise, the side lengths are different. The 
function propFF that computes the Fraunhofer pattern follows: 
 

1 function[u2,L2]=propFF(u1,L1,lambda,z); 
2 % propagation - Fraunhofer pattern 
3 % assumes uniform sampling 
4 % u1 - source plane field 
5 % L1 - source plane side length 
6 % lambda - wavelength 
7 % z - propagation distance 
8 % L2 - observation plane side length 
9 % u2 - observation plane field 
10 % 
11 [M,N]=size(u1);           %get input field array size 
12 dx1=L1/M;                 %source sample interval 
13 k=2*pi/lambda;            %wavenumber 
14 % 
15 L2=lambda*z/dx1;          %obs sidelength 
16 dx2=lambda*z/L1;          %obs sample interval 
17 x2=-L2/2:dx2:L2/2-dx2;    %obs coords 
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18 [X2,Y2]=meshgrid(x2,x2); 
19 % 
20 c=1/(j*lambda*z)*exp(j*k/(2*z)*(X2.^2+Y2.^2)); 
21 u2=c.*ifftshift(fft2(fftshift(u1)))*dx1^2; 
22 end 

 
This function also outputs the side length of the observation plane L2 so it 
doesn’t have to be computed again in the main script. To try this out, make the 
following changes in the sqr_beam routine: 
 

w=0.011;              %source half width (m) 
 

[u2,L2]=propFF(u1,L1,lambda,z); 
 

dx2=L2/M; 
x2=-L2/2:dx2:L2/2-dx2; %obs ords   
y2=x2; 

 
imagesc(x2,y2,nthroot(I2,3));%stretch image contrast 

 
Use “Save as” and give this file a new name, sqr_beam_FF. The source half 
width w = 0.011 m with the propagation distance of z = 2000 m gives a 
Fresnel number of 0.12, which is reasonable for the Fraunhofer approximation. 
Running sqr_beam_FF gives the irradiance results of Fig. 5.7. Stretch the 
contrast of the irradiance pattern with the nthroot function to bring out the 
sidelobes. 

The simulation result can be checked against the analytic Fraunhofer result. 
Take the Fourier transform of the source distribution: 
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Figure 5.7 Fraunhofer irradiance (a) pattern and (b) x profile. Points in (b) are analytic 
values. 
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Substitute x2/z for fX1 and y2/z for fY1 and include the multipliers to get the 
Fraunhofer field: 
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Points for the analytic function are also plotted in Fig. 5.7(b). Now it is your turn: 
insert Eq. (5.22) into the script and see if you can get the plot shown in Fig. 
5.7(b). 

Usually, the irradiance is of interest when calculating the Fraunhofer pattern, 
so the complex exponentials out front disappear. In this case the only worry is the 
usual source plane sampling condition, 11 2/1 xB  . But, suppose the Fraunhofer 
field is of interest, including the chirp term. Based on Eq. (5.7), the chirp function 
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if 22 / Lzx  , or equivalently, by applying Eq. (5.18) when the source plane 
sampling is 
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If Eq. (5.23) is not satisfied, the chirp phase will be aliased when tacked on the 
front of the transform. Furthermore, consider the Fresnel number, 
where 1/2 zw   in the Fraunhofer regime, and combine this with Eq. (5.23) to 
find 
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which says the number of grid samples M needs to be much greater than the 
square of the number of samples across the source aperture radius w2/x1

2. This 
implies a large M. Fortunately, the Fraunhofer phase is not often required. 

5.6 Coding Efficiency 

Some aspects of the functions and scripts presented in this chapter (and 
throughout the book) are inefficient for reasons related to ease of use or 
presentation. For example, meshgrid is used in the sqr_beam code to define 
the sample coordinates, but then it is applied again in the propagation functions 
to redefine the coordinates. This makes the functions easier to use but it is 
redundant.  

Speed and efficiency are not a big problem for the examples in this book, but 
they can be an important issue when running many iterations of a propagation 
code. To help tune-up your code, try out two coding tools provided by 
MATLAB: M-Lint and the Profiler. 

M-Lint is an analyzer that checks the code in the Editor for possible 
problems. Get to M-Lint by going to the MATLAB Desktop toolbar. Select 
“Tools > Check Code with M-Lint.” You will see a display of potential problems 
that M-Lint finds. 

The Profiler tracks the execution time of the various statements and function 
calls in your code. It can help find problems and improve the efficiency of your 
code. On the Desktop toolbar, select “Tools > Open Profiler.” The Profiler 
window will appear. The file to be profiled is in the menu box next to “Run this 
code:” Click on “Start Profiling.” The code will execute, and a Profile Summary 
window will give a breakdown of the execution times.  

5.7 Exercises 

5.1 Assume a circular aperture with a radius of w = 0.05 m illuminated by a 
plane-wave, where  = 0.5 m. Assume a propagation distance of 1000 m 
and a simulation array size of 500  500 samples. Assume critical sampling 
for a Fresnel propagation. 

(a) Find the side length L1, sample interval x, and the Nyquist 
frequency FN. 

(b) Determine the source effective bandwidth B1. Is B1 < FN? How many 
samples span the diameter of the circle function? 

(c) Determine the Fresnel number. Is the propagation distance within the 
Fresnel region? 

(d) Using the value for L1 from (a), simulate Fresnel propagation for 
distances of 500, 1000, and 2000 m. Try both TF and IR simulations. 

 



84 Chapter 5 

5.2 Return to the three apertures of Exercise 4.4. Simulate Fresnel propagation of 
the source fields in a 500  500 sample array with the following 
parameters: 

 Aperture (a), L1 = 2 mm; z = 0.5, 1, and 5 cm. 

 Aperture (b), L1 = 2.5 cm; z = 0.5, 2, and 5 m. 

 Aperture (c), L1 = 2.5 cm; z = 0.5, 2, and 5 m. 

 What are the distances z that result in critical sampling? 

 
5.3 A useful diagnostic for propagation simulations is to compute the power in 

the source and observation planes. Assuming no absorption or scatter of the 
light, which is true for the simulations presented in this book, the power 
(proportional to watts) should be conserved. In other words, the source and 
observation planes should contain the same optical power. If not, there may 
be a code error or a sampling problem. The power is the integrated 
irradiance, or 

 

 ( , )P I x y dxdy   . (5.25) 

 
For the sqr_beam example in this chapter: 

(a) Add code to compute the power at the source and observation planes 
for the various propagations. Use the MATLAB function sum. 
Maybe two of these? What about dx and dy? You can remove the 
semicolon from the end of the line with the power calculation so that 
the value displays in the Command Window when the script is 
executed. 

(b) Are there discrepancies in some of the sqr_beam example cases 
regarding the power in the source and observation planes? 

 
5.4 Rayleigh–Sommerfeld diffraction: Fresnel diffraction involves a paraxial 

(small ray angle) assumption that limits the minimum propagation distance, 
whereas Rayleigh–Sommerfeld diffraction is essentially exact over all 
distances.  

(a) Based on the Fresnel diffraction routines, write transfer function and 
impulse response propagators for Rayleigh–Sommerfeld diffraction. 

(b) Test the routines with the sqr_beam example for the four distances 
(1000, 2000, 4000, and 20,000 m). Are there differences between the 
Fresnel and Rayleigh–Sommerfeld results? 
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(c) Calculate the Fresnel numbers for the sqr_beam examples. What 
can you say about applying Fresnel versus Rayleigh–Sommerfeld 
propagation in this case? 

5.5 Gaussian Beam. Fourier methods are well suited for simulating laser beam 
propagation. Typically, a laser beam obeys the paraxial ray angle 
approximation, which is valid for the Fresnel expression. Also, the Gaussian 
function used to describe the beam profile is more forgiving in terms of 
sampling artifacts than a square or circular aperture beam of similar support. 
Laser textbooks define the irradiance distribution of a Gaussian laser beam 
(TEM0,0 mode) propagating in the z direction as 
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where x, y are transverse spatial variables, I0 is the source irradiance value at 
beam center (x, y = 0), w0 = source beam e−2 radius (at z = 0), and  w(z) is the 
beam radius at distance z. The beam radius is given by 
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where zR is the Rayleigh range defined by 
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 For the following questions, assume a source optical field (z = 0) given by  
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where w0 = 1 mm,  = 0.633 m, and A0 = 1 V/m. To be accurate, I0 = 
|A0|

2/(2) W/m2 where  = 377  in free space. 

(a) Assume a side length of 15 mm and an array of 250  250 elements. 
Create the Gaussian beam of Eq. (5.29) in the source array, then 
simulate Fresnel propagation for distances of 1, 5, and 10 m. 
Compare irradiance results with the analytic result of Eq. (5.26). 

(b) What is the propagation distance for critical sampling? Test the 
source bandwidth criterion for a 10-m propagation distance.  
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(c) Derive the Fraunhofer irradiance expression for the U0 beam. Show 
that your result is consistent with the analytic expression in Eq. 
(5.26). 

 
5.6 Test the concept expressed in Eq. (5.15). Use the TF propagator with the 

sqr_beam example to simulate a total propagation distance of z = 20,000 m, 
but make a split-step simulation where the propagator is called 10 times in 
succession. The propagation distance for each step is z = 2000 m (critical 
sampling). Compare the split-step result with a single TF propagation of 
20,000 m. Are the results the same? 
 

5.7 Return to the three apertures of Exercise 4.4. Simulate Fraunhofer 
propagation of the source fields in a 500  500 sample array with the 
following parameters: 

 Aperture (a): L1 = 2 mm; z = 5 m. 

 Aperture (b): L1 = 2.5 cm; z = 50 m. 

 Aperture (c): L1 = 2.5 cm; z = 50 m. 

 Compare discrete and analytic results in an x-axis irradiance profile. (Note 
that there is no attempt in this exercise to model the Fraunhofer field such 
that the phase is adequately sampled.) 

 
5.8 Consider a square aperture illuminated by a plane wave and assume the 

square function is sampled in a simulation such that at least 98% of the 
spectral power is available [see Eq. (2.11)]. Find a criterion for the number of 
linear samples M necessary for the simulation array in order to adequately 
sample the Fraunhofer field phase. The result should contain no variables—
just a number. 

 
5.9 Two-step propagator. Code up the two-step propagator function described in 

Appendix B. Test it with the sqr_beam example for the following cases: 

(a)  For L1 = 0.5 m; z = 2000 m (critical sampling distance): Examine the   
field magnitude profiles for L2 = 0.2, 0.4, 0.5, 0.6, and 1 m. The 0.5 
m case should be identical to the TF propagation result. What are the 
apparent artifacts for the other distances?   

(b) For L1 = 0.5 m; z = 20,000 m: Does adjusting the L2 size reduce    
artifacts in the observation plane result? 
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Chapter 6 

Transmittance Functions, 
Lenses, and Gratings 
 
 
The beam sources implemented in Chapter 5 are for the most part simple 
apertures illuminated by a plane wave. They are modeled with real functions and, 
in effect, have a zero phase component. In this chapter functions are presented 
that create a more complicated field by altering the magnitude and/or phase of 
the field. The functions can be used to apply “tilt” or “focus” to a field, model the 
effect of a periodic structure, or model a lens. In general, these transmittance 
functions can be thought of as multiplying an incident field to create a desired 
effect; however, some represent well-known optical components such as a 
diffraction grating or a lens. 

The functions discussed in this chapter provide considerable utility in their 
own right, but like the basic functions they can be combined to create more 
elaborate fields. As a matter of convenience these functions are described as part 
of the source, or as applied in the source plane. However, they can be applied in 
other planes; for example, the pupil of an imaging system, which is coming up in 
Chapter 7. 

6.1 Tilt 

An optical beam can be steered in a propagation simulation by applying a “tilt” to 
the beam wavefront. Suppose a tilt of angle of  is applied to a wavefront, as 
indicated in Fig. 6.1, where the dashed line represents the tilted wavefront of the 
beam and the arrow indicates the intended direction of propagation. 

An expression for the dashed line in Fig. 6.1 is z = y tan . The intent is to 
convert this line to a phase front in the x–y plane at z = 0. This essentially 
requires replacing the position z with a phase quantity. As time progresses the 
wave moves in the positive z direction, but (as noted previously), the phase 
representation becomes more negative. This reverses the sign of the expression. 
The wavelength  corresponds to 2 rad in the phase notation; so, using the 
wavenumber parameter k = 2/, the phase function for producing the tilt is 
 
  tan),( kyyxY  . (6.1) 



90  Chapter 6 

 
 

Figure 6.1 Wavefront tilt in the y–z plane. 

 
More generally, to produce a tilt  relative to the z axis but in a radial direction 
defined by the angle  in the x–y plane (see Fig. 6.2), one can use 
 
  tan)sincos(),( yxkyx  , (6.2) 
 
where  xy /tan 1 . The transmittance function is, therefore, 
 
   tan)sincos(exp),( yxjkyxt A  . (6.3) 
 
Note that  = tan−1(r/z), where r is the radial distance in the observation plane 
from the origin to the beam aiming point (Fig. 6.2). The function tilt is listed 
here: 
 

1 function[uout]=tilt(uin,L,lambda,alpha,theta) 
2 % tilt phasefront 
3 % uniform sampling assumed 
4 % uin - input field 
5 % L - side length 
6 % lambda - wavelength 
7 % alpha - tilt angle 
8 % theta - rotation angle (x axis 0) 

 

 
 

Figure 6.2 Beam-aiming point in the observation plane. 
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9 % uout - output field 
10  
11 [M,N]=size(uin);        %get input field array size 
12 dx=L/M;                 %sample interval 
13 k=2*pi/lambda;          %wavenumber 
14  
15 x=-L/2:dx:L/2-dx;       %coords 
16 [X,Y]=meshgrid(x,x); 
17  
18 uout=uin.*exp(j*k*(X*cos(theta)+Y*sin(theta))... 
19    *tan(alpha));       %apply tilt 
20 end 

 
In the expression for uout (line 18), typing three periods and hitting enter allows 
the equation to be continued on the next line. Test the tilt function by returning 
to the “sqr_beam” example from Section 5.3. Save a new version 
(sqr_beam_tilt) and insert the following before the propagation call: 
 

deg=pi/180; 
alpha=5.0e-5; %rad 
theta=45*deg;  
[u1]=tilt(u1,L1,lambda,alpha,theta); 

 
where Fig. 6.3 is the irradiance result after executing the example.  

Sampling limitations also exist for this technique. As one might guess, if the 
tilt is large enough to translate the beam in the observation plane beyond the grid 
boundary, there will be trouble (see Exercise 6.1). To study this limitation, 
consider that tilt is a linear phase exponential applied to the source function U1. 
Assume a single-axis tilt, and apply the shift theorem to the transform of the 
source field to get 
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Figure 6.3 Irradiance pattern for the tilt example:  = 0.5 rad,  = 45 deg. 
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where  11 UG  . If the source has a bandwidth of B1, then considering the 
spectrum is essentially shifted, the combined effective bandwidth for the field 
leaving the source is 
 

 

tan

11  BB T . (6.5) 

 
This bandwidth can now be substituted for B1 in the propagation criteria of Table 
5.3. For example, if x  z/L, then the propagation criterion is B1

+T  1/(2x). 
Using Eq. (6.5), and with some rearrangement, we get 
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x
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where  is assumed to be a small angle. Some comments about this criterion 
include the following: 

(a)  The result is approximate as the specific interaction of the source and 
propagator phase is not accounted for in Eq. (6.5) or (6.6). For example, 
one may cancel some of the effects of the other. 

(b)  If Lzx /  (“shorter distance”), a variety of artifacts can appear in the 
observation plane, such as “fringing” and asymmetries before the tilt 
angle  nears the bound. 

(c)  If Lzx /  (“longer distance”), replace 1/2x1 with L1/(2z) in Eq. 
(6.6). 

 
In the sqr_beam_tilt example,  = 0.5  106 m and x1 = 2  103 m. 

Using B1  98 cycles/m, which was calculated in Eq. (5.10), the tilt angle 
criterion result is   7.6  10−5 rad. Try this tilt angle and see what happens. Set 
theta=0 and alpha=7.6e-5. The resulting beam should appear close to the 
array edge. Check the magnitude profile where some “wrap-around” effects are 
apparent with energy from the beam entering the opposite side of the grid 
(periodic extension!). To split the pattern across the grid boundary, let  = /2x1 
= 1.25  10−4. 

Try some shorter and longer propagation distances in sqr_beam_tilt and 
observe how the beam is affected as the tilt increases. In general, it is a good idea 
to work with tilt angles that are well within the limit set by Eq. (6.6). In typical 
simulations the maximum available tilt angle is quite small, which is consistent 
with the paraxial nature of the Fresnel propagator. 
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6.2 Focus 

Another useful operation is converging (“focusing”) or diverging (“defocusing”) 
an optical beam. A beam with a spherical wavefront, as shown in Fig. 6.4, will 
converge to the position zf on the z axis. We can proceed in the same manner as 
was done for tilt to find the converging phase front in the x–y plane at z = 0. This 
is given by 
 

 222),( yxzkyx fS  . (6.7) 

 
As x or y increases the phase values become more negative, which indicates the 
wavefront off the axis leads (in time) the on-axis wavefront (see Section 4.3). 
Thus, the negative sign in Eq. (6.7) corresponds to a converging wavefront, as 
illustrated in Fig. 6.4. A positive sign corresponds to a diverging wavefront. 
Borrowing from the discussion of the Fresnel diffraction in Section 4.4.2, the 
application of the binomial approximation gives a parabolic phase front that 
approximates the spherical phase front: 
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The transmittance function for focus is, therefore, 
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This is a phase chirp function of the same form that appears in Eq. (4.23) for the 
Fresnel impulse response function h, although the exponent sign is negative. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.4 Converging wavefront. 
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 A MATLAB function for applying focus follows: 
 

1 function[uout]=focus(uin,L,lambda,zf) 
2 % converging or diverging phase-front 
3 % uniform sampling assumed 
4 % uin - input field 
5 % L - side length 
6 % lambda - wavelength 
7 % zf - focal distance (+ converge, - diverge) 
8 % uout - output field 
9  
10 [M,N]=size(uin);        %get input field array size 
11 dx=L/M;                 %sample interval 
12 k=2*pi/lambda;          %wavenumber 
13 % 
14 x=-L/2:dx:L/2-dx;       %coords 
15 [X,Y]=meshgrid(x,x); 
16  
17 uout=uin.*exp(-j*k/(2*zf)*(X.^2+Y.^2)); %apply focus 
18 end 

 
Try this on the sqr_beam example (new file sqr_beam_focus). Insert the 
following before the propagation call and run the script: 
 

zf=2000; 
[u1]=focus(u1,L1,lambda,zf); 

 
The result is shown in Fig. 6.5. That looks like a pretty good focus! In this 
example the focal distance is the same as the propagation distance, so a small 
spot is expected. The pattern is, in fact, a scaled Fraunhofer pattern. (Check out 
Section 6.3.) Try some other focal distances—see what happens. Can you get the 
pattern to expand to fill the observation plane grid? A negative focus value puts 
the focal point in a virtual position behind the plane and causes a diverging wave 
(Fig. 6.6). Try it! 

Multiplying a source field by Eq. (6.9) has the effect of increasing the source 
bandwidth. The increase in bandwidth is roughly the source support radius D1/2 
over | zf |, so the combination effective bandwidth is approximately 
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For B1

+F  1/(2x), then with some rearranging, a bound is obtained for the focal 
distance: 
 
 



Transmittance Functions, Lenses, and Gratings 95 

 
 

x (m)

y 
(m

)

z= 2000 m

-0.2 -0.1 0 0.1 0.2

-0.2

-0.1

0

0.1

0.2

 
-0.2 -0.1 0 0.1 0.2

0

20

40

60

80

100

120

x (m)

z= 2000 m

 
(a) (b) 

 

Figure 6.5 (a) Image irradiance and (b) profile for the focus example. 
 
 
 
 
 
 
 
 
 

(b) (b) 
 

Figure 6.6 Geometrical ray diagram for (a) a converging wavefront and (b) a diverging 
wavefront at the source plane. 
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As with the tilt angle criterion, Eq. (6.11) is approximate because the exact 
interaction of the source and propagator phase is not considered. 

For the sqr_beam_focus example,  = 0.5  10−6 m, x1 = 2  10−3 m, B1  
98 cycles/m and D1 = 0.102 m, which leads to |zf |  671 m. Test this condition 
with the sqr_beam_focus code. When zf = −671 m, the beam is diverging and 
clearly is pushing over the array boundaries in the observation plane. When zf = 
+671 m, the pattern is smaller since the beam went through a focus before the 
observation plane (Fig. 6.6). The pattern looks reasonable; however, phase 
aliasing errors are just starting to creep in on the array edges. This can be seen in 
the unwrapped phase profile of the observation plane field. 
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6.3 Lens 

A lens is an optical element that uses refraction to focus or diverge light. The 
transmittance function for an ideal, simple lens is given by1 
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where f is known as the focal length and P(x,y) is the pupil function. This is 
essentially the same complex exponential defined for focus with zf replaced by f. 
A positive focal length produces a converging wavefront from a plane-wave 
input and a negative focal length produces a diverging wavefront. The pupil 
function accounts for the physical size of the lens—the opening available to 
collect light. For example, the most common lens pupil function is a circle 
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where wL is the radius of the lens aperture (not to be confused with the radius of 
curvature of the wavefront that exits the lens). 

It is not always practical to implement the transmittance function of Eq. 
(6.12) in Fresnel propagation as was done for the focus example. This is because 
the focal length f is governed by the same criterion as zf given in Eq. (6.11), and 
since f tends to be relatively short, a large number of samples are required. 
Assume a plane wave incident on the lens, which implies B1  0, then with some 
algebra the expression in Eq. (6.11) leads to 
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where DL = 2wL. The ratio Lf D is known as the focal ratio, or the f-number, 

indicated by f /#. With this substitution, 
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x

f
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/# . (6.15) 

 
Practical lenses have f /#s ranging from perhaps 2 to roughly 50 and diameters 
2wL of a few millimeters to maybe 100 mm. Take a typical value, f/# = 10 
(usually written f/10) and a diameter of 25 mm. Assume visible light  = 0.5  
10−6 m, then Eq. (6.15) yields 
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 m105 6x . (6.16) 
 
Furthermore, to implement Fresnel propagation, the array side length L needs to 
at least span the lens diameter. Thus, the linear number of samples in an array 
required to model this lens is 
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which is a rather large array. Thus, modeling lenses directly with the Fresnel 
propagator is usually practical only for large f/#s. 

However, all is not lost for smaller f/#s. If the field incident on the lens is 
U1(x1, y1), then the field exiting the lens is U1(x1, y1)tA(x1, y1). Insert this into Eq. 
(4.25) for U1(x1, y1) and set z = f. The chirp functions in the integral cancel, and 
the result is  
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The expression in Eq. (6.18) shows the field at the focal plane of an ideal 
positive lens is simply the Fraunhofer pattern of the incident field with z = f. 

Therefore, to find the field or irradiance pattern in the focal plane of a 
positive lens, including one with a small f/#, the function “prop_FF” from the 
previous chapter can be applied replacing z with f. 

Take the parameters from the f/10 lens example and assume U1 is a unit 
amplitude plane wave. Select M = 250 and L = 250 mm. The irradiance pattern in 
Fig. 6.7 is generated for the focal plane using prop_FF (see Exercise 6.4). Try it! 
The focused irradiance pattern formed with an ideal circular-shaped lens, such as 
shown in Fig. 6.7, is known as the Airy pattern.  

A special case of interest is when the source field is located in the front focal 
plane of a positive lens, a distance f from the lens (Fig. 6.8). For this arrangement 
the field at the focal plane is1 
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Figure 6.7  (a) Image irradiance and (b) x-axis profile for the lens Fraunhofer pattern. The 
fourth root is applied for (a). The large peak irradiance value in (b) is because all of the 
power in the unit amplitude field incident on the lens is being focused to a very small area. 

 

 
 

Figure 6.8  “Fourier transform” lens arrangement. 
 
The chirp phase factor out front is now gone, so the focal plane field is a scaled 
Fourier transform of the input field. The arguments in the pupil function account 
for vignetting, which is a loss of light for off-axis points in the input field due to 
the finite pupil size. The effect of vignetting is reduced if the lens pupil is 
oversized compared to the support of the input field. 

6.4 Gratings and Periodic Functions 

A grating is an optical component that has a spatially periodic structure. Incident 
light diffracts either in transmission or reflection from the structure, and the 
colors (wavelength components) of the light become spatially separated some 
distance from the grating. Gratings are commonly used in spectrometers for 
examining the wavelength spectrum of an optical signal or in spectrophotometers 
that measure the spectral characteristics of an optical component. The diffraction 
pattern from a grating is usually observed in the Fraunhofer region. 

f f 

U1(x1, y1) 

U2(x2, y2) 
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6.4.1 Cosine magnitude example 

A conventional grating has grooves cut into its surface that impart a magnitude 
and/or phase disturbance to the incident wave. To demonstrate modeling of 
periodic functions like those in gratings, start with an amplitude transmittance 
function given by 
 

 
1 1

1
( , ) 1 cos 2π rect rect

2A

x x y
t x y

P D D

                  
. (6.20) 

 
Figure 6.9 illustrates a 1D profile of this grating. In Eq. (6.20) the grating is 
defined within the 2D area D1  D1. The cosine pattern is only a function of x and 
has a period P. Typically, P << D1. When illuminated by a unit amplitude plane 
wave, the source field is    11111 ,, yxtyxU A . The Fraunhofer pattern is created 
using a lens (or mirror) of focal length f. The grating is simulated in the script 
“grating_cos,” where the first part of this code is shown here: 
 

1 % grating_cos diffraction grating example 
2  
3 lambda=0.5e-6;  %wavelength 
4 f=0.5;          %propagation distance 
5 P=1e-4;         %grating period 
6 D1=1.02e-3;     %grating side length 
7  
8 L1=1e-2;        %array side length 
9 M=500;          %# samples 
10 dx1=L1/M; 
11 x1=-L1/2:dx1:L1/2-dx1; %source coords 
12 [X1,Y1]=meshgrid(x1,x1); 
13  
14 % Grating field and irradiance 
15 u1=1/2*(1-cos(2*pi*X1/P)).*rect(X1/D1).*rect(Y1/D1); 
16  
17 % Fraunhofer pattern 
18 [u2,L2]=propFF(u1,L1,lambda,f); 
19 dx2=L2/M; 
20 x2=-L2/2:dx2:L2/2-dx2; y2=x2;%obs coords 
21 I2=abs(u2).^2; 

 
It is critical that the periodic function be sampled adequately. The number of 
samples that span the periodic function (the length P) is  
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Figure 6.9 Cosine grating profile. 
 
In the case of grating_cos, MP/L1 = 5 indicates that five samples span each 
cosine cycle, which is okay. At least two are required to satisfy the sampling 
theorem. The values for L1, D1, P, and M were also selected in grating_cos 
to provide a clear display of the Fraunhofer pattern. Furthermore, the value for 
D1 provides an odd number of samples (D1/dx1 = 51) across the rect 
functions, which is consistent with our rect function definition. The lens focal 
length was arbitrarily chosen as f = 0.5 m. Figure 6.10 shows irradiance images 
of the source plane (I1) and the observation plane (I2) and an x-axis profile in 
the observation plane. The central feature is known as the zero order and the two 
side features are the −1 and +1 “first-order” peaks. 

To make sure the simulation is working properly, the results can be 
compared with the analytic expression for the Fraunhofer pattern. First, the 
Fourier transform of the source field is required: 
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  (6.22) 
 
Then perform the convolution: 
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 (6.23) 
 
Substitute x2/z  fX1 and y2/z  fY1 and apply the multipliers to get the 
Fraunhofer field: 
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Figure 6.10 Results for grating_cos: (a) source irradiance; (b) Fraunhofer irradance 
(contrast enhanced with third root); and (c) x-axis profile of Fraunhofer irradiance. [The 
display in (a) does not resolve the grating periodic features.] 
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 (6.24) 
 
The irradiance is the squared magnitude of Eq. (6.24). The following script 
portion evaluates the analytic irradiance result: 
 

%analytic 
[X2,Y2]=meshgrid(x2,y2); 
lz=lambda*z; 
u2a=(1/lz)*D1^2/2*sinc(D1/lz*Y2)... 
    .*(sinc(D1/lz*X2)-1/2*sinc(D1/lz*(X2+lz/P))... 
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Figure 6.11 Irradiance profiles for grating_cos for  = 0.5 m and 0.6 m. 
    

-1/2*sinc(D1/lz*(X2-lz/P))); 
I2a=abs(u2a).^2; 

 
The front complex exponential terms for the Fraunhofer pattern were not coded 
up since only the irradiance is being examined—but don’t forget 1/z. Try this 
and see if the discrete and analytic plots come out the same. 

The main application for a grating is wavelength separation. Figure 6.11 
shows superimposed curves for  = 0.5 m and  = 0.6 m. The first-order peaks 
are clearly separated. To produce these curves, run the code for one wavelength 
and in the command window store I2 and x2 in temporary arrays (for example, 
I2p5=I2; x2p5=x2;). Rerun the code for the other wavelength and execute 
the plot function for both curves under the Command Window using 
plot(x2p5,I2p5(M/2+1,:),x2,I2(M/2+1,:). The x2 scale is 
different for each wavelength—don’t use the same x2 vectors for the two curves! 
“Illuminating” a larger grating area narrows the orders and results in better 
spectral resolution. You can test this by making D1 larger. 

6.4.2 Square-wave magnitude example 

Another example of a grating is illustrated in Fig. 6.12. The transmittance 
function is given by 
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where P is the period of a square-wave amplitude pattern that stretches in the x 
direction and lies within the 2D area of D1  D1. This grating is simulated in the 
following script “grating_sqr” (only a portion is shown):  
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1 % grating_sqr diffraction grating example 
2  
3 lambda=0.5e-6;  %wavelength 
4 f=0.5;          %propagation distance 
5 P=1e-4;         %grating period 
6 D1=1e-3;        %grating side length 
7  
8 L1=1e-2;        %array side length 
9 M=1000;         %# samples 
10 dx1=L1/M; 
11 x1=-L1/2:dx1:L1/2-dx1; %source coords 
12 [X1,Y1]=meshgrid(x1,x1); 
13  
14 % construct grating field 
15 fc=fft(fftshift(ucomb(x1/P))); 
16 fr=fft(fftshift(rect(x1/(P/2)))); 
17 ux=ifftshift(ifft(fc.*fr)); %1D conv rect & comb 
18 u1=repmat(ux,M,1);          %replicate to 2D 
19 u1=u1.*rect(X1/D1).*rect(Y1/D1); %set size 

 
... (then apply the Fraunhofer propagator). 

 
 In this example the ucomb function is used to create a 1D periodic sequence 
of unit sample delta functions (defined in Appendix C). This delta is defined as a 
unit value at the coordinate of interest. The ucomb function truncates the input 
values at the sixth decimal position, so small round-off error will not cause 
problems in placing the unit samples. 

For the ucomb function to work properly, the vector coordinates must be 
such that a sample is found at each position where the delta function is needed. 
Thus, P/dx1 needs to be an integer. In this case, dx1=110−5 m. Therefore the 
unit values appear in the vector fc for every 10 samples (P/dx1 = 10). An odd 
number of samples is arranged across each of the periodic rect functions (P/2 = 
5) to be consistent with the rect function definition. 
 The approach for grating_sqr is to perform a 1D convolution (fft rather  
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Figure 6.12 Square-wave grating profile. 
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Figure 6.13 Fraunhofer irradiance profile for the grating modeled in grating_sqr. 

 
than fft2) with the ucomb and rect sequences. A scaling multiplier is not 
needed on the convolution result because (a) the ifft correctly scales for one 
fft (for example, fr) and (b) each unit sample delta behaves as though it has an 
area of 1/dx1, which cancels the dx1 that arises from the second fft. The 
repmat function is a quick way to fill the rows of the 2D array u1 with the 
vector ux. 
 The field created by the grating is propagated using propFF, and the profile 
for I2 is shown in Fig. 6.13. It is similar to the cosine grating but with some 
additional higher-order peaks. Again, analytic theory can be used to verify the 
simulation. To find the Fraunhofer pattern, take the Fourier transform of the field 
and simplify as follows: 
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The Fraunhofer field is given by 
 

(6.26) 
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Below is part of the code to generate the irradiance pattern for Eq. (6.27). A for 
loop is used for the summation and 11 terms are computed (n = −5 to 5). More 
terms do not make a noticeable difference in the result: 
 

lf=lambda*f; 
u2a=zeros(1,M); 
for n=-5:5 
    ut=sinc(n/2)*sinc(D1/lf*(x2-n*lf/P)); 
    u2a=u2a+ut; 
end 
u2a=D1^2/(2*lf)*u2a; 
 

Implement this code at the end of sqr_grating. Compare the results with the 
numerical simulation. Can you get them to match? 

6.4.3 One-dimensional model 

The gratings examined thus far have no y directional periodic dependence. When 
this is the case, a 1D model (where y = 0) can be used to analyze the most critical 
part of the grating response, which is along the x axis. To do this, the y-dependent 
terms are removed, meshgrid is no longer required, and the function repmat 
is not required. Also, a 1D Fraunhofer calculation is required. The advantage of 
1D modeling is that larger vectors can be used; so, more overall width and cycles 
across the grating can be modeled. 

Return to the grating_sqr example and make the changes listed above for 
a 1D result. Call this new script “grating_sqr1D.” Let M=2200, but leave all 
of the physical parameter definitions the same as before. Be sure to remove 
rect(Y1/D1)from line 19. The 2D function propFF is removed and the 1D 
Fraunhofer pattern can be calculated using 
 

u2=sqrt(1/lz)*ifftshift(fft(fftshift(u1)))*dx1; 
L2=lz/dx1; 

 
 Figure 6.14 shows profiles of the 1D Fraunhofer pattern. The greater number 
of samples results in an increase of the side length of the Fraunhofer pattern. The 
expanded view in Fig. 6.11(b) shows the relative size and position of the orders 
are the same as in the original result in Fig. 6.10. The overall magnitudes are 
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Figure 6.14 1D Fraunhofer irradiance profile for the grating modeled in grating_sqr: (a) 
full vector view; (b) expanded view. 
 
different because the 1D case does not account for power associated with the 
second dimension. More samples across the periodic features in the 1D model 
produce fewer artifacts (small ripples) in the result compared to the 2D result. 

6.4.4 Periodic model 

How about modeling a grating that is essentially infinite in extent? Although 
not a practical device, it is not uncommon for a beam of light incident on a 
grating to cover hundreds or thousands of the periodic cycles—more than 
anything modeled here so far. But, more importantly, for an infinite-support 
grating the diffracted orders for an infinite (analytic) grating are delta functions 
and the multipliers for these delta functions indicate the relative amount of 
optical power that is directed to each order. For optical spectral analysis, high 
diffraction efficiency into the first order is usually desired. 
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Suppose the grating structure fills the array (D1 = L1) and the periodic 
features are carefully arranged such that an integer number of periods P exactly 
spans the array, or 
 

 integer1 
P

L
. (6.28) 

 
This case is illustrated in Fig. 6.15. The discrete Fourier transform, applied to 
obtain the Fraunhofer pattern, produces a result that is associated with repeating 
copies of the input array (periodic extension). Since the source is arranged to be 
perfectly continuous at the array boundaries, the result is the transform of an 
infinite periodic structure. 
 Return to Section 6.4.1 and the grating_cos example. Set D1=1e-2, 
which is the value of the side length L1. Since L1/P = 100, there are exactly 100 
cycles of the cosine function across the array. Executing the script yields sample 
delta functions at the diffractive order positions. To find the percentage of optical 
power in each order, compute the optical power at each sample in the observation 
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Figure 6.15 Cosine grating profile with an integer number of periods occupying the 
vector. 
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Figure 6.16 Power percentage result for a periodic model of the grating_cos example.  
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plane (irradiance integrated over the sample interval area) and divide by the total 
power transmitted by the grating (source field magnitude squared, integrated over 
the grating area). For grating_cos this operation looks like 

 
Ppct=I2*dx2*dx2/(L1^2); 
 

where a unit source field magnitude is assumed. A display of Ppct is shown in 
Fig. 6.16 for the grating_cos example; 25% of the power is in the zero order, 
and 6.25% is found in each of the  first orders. 

6.5 Exercises 

6.1 The diagram in Fig. 6.17 illustrates the propagation of a field at an angle  
relative to the optical axis. The field support D2 just reaches to the edge of 
observation plane side length, a distance L/2 from the axis. Use this 
arrangement to derive the same tilt criterion as defined in Eq. (6.6). Assume 
critical sampling and Fraunhofer propagation. For Fraunhofer propagation, 
D2 = 2B1z. 

 
6.2 Demonstrate both tilt and focus simultaneously for the sqr_beam example. 

Use the TF approach with z = 2000 m. Assume  = 5.0  10−5 rad,   = 45 
deg for tilt and zf = 4000 m for focus. 

 
6.3 Among other applications, cylindrical lenses are commonly used to change 

an oblong-shaped laser diode beam into a more circular beam. 

(a) Create a function to produce a cylindrical focus (focus in only one 
transverse axis). 

(b) Demonstrate the cylindrical focus with the sqr_beam example, zf(X) 
= 2000 m. 

   
 

 
 

Figure 6.17 Diagram for propagation at an angle . 
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(c)  Is it generally possible to describe the irradiance in the focal plane of 
a cylindrical lens in terms of a Fraunhofer pattern as was done in Eq. 
(6.18) or (6.19) for a spherical lens? 

 
6.4 Airy pattern: 
 

(a) Generate the Airy pattern shown in Fig. 6.7 for an ideal f/10 lens ( f = 
250 mm and diameter 2wl = 25 mm). Use M = 250 and L = 250 mm. 
Derive the analytic result and compare with the simulation result in a 
profile plot. 

(b) Demonstrate the effect in the focal plane of reducing the diameter of 
the lens pupil. 

 
6.5 Zone plate: Zone plates can be used in parts of the electromagnetic spectrum 

where glass or other materials are not transparent; but, for what purpose? 
Let’s find out. Consider the transmittance function 
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where 22 yxr  . The transmittance of this plate is illustrated in Fig. 

6.18. 
 

(a) Rewrite Eq. (6.28) using complex phasor notation. If a plane wave 
illuminates this plate, how do you expect the transmitted field to 
behave? 

(b)  Derive a sampling criterion for rendering this plate in a discrete array 
(check out Appendix A). Create a Fresnel propagation simulation for 
this plate in the source plane. Assume the following: unit amplitude 
 

 
Figure 6.18 Zone plate transmittance illustration. 
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plane-wave illumination, L1 = 50 mm, M = 500,  = 0.5 m, w  = 
6.25 mm, and f = 10 m. The choice of an extremely large value of f 
relative to the plate radius is necessary for sampling, and also to 
provide a magnified pattern at the observation plane. 

(c) Show whether the sampling criterion for the plate is satisfied. 

(d) Examine the propagation sampling for z = 10 m. Should the transfer 
function or impulse response approach be used? 

(e) Simulate the irradiance patterns for propagation distances of 5, 8, 10, 
and 12 m. Display the patterns and profiles. 

Another type of zone plate is given by 
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where the sign function is 
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This plate has a binary transmittance (either 1 or 0) and can be made with 
rings of suspended opaque material.  

(f) Simulate this plate and repeat part (e) using the same parameters as 
for the first plate (…you might check to see if MATLAB has a 
“sign” function…). 

(g) Compare the irradiance profiles for the two plates at the focal plane 
(z = 10 m). Which is more efficient? 

(h) Compare the zone plate profiles with the focal plane irradiance 
profile for a positive lens of the same characteristics. 

6.6 How critical is the sampling arrangement for periodic functions? Do some 
testing! Change the number of samples in the grating_sqr example, for 
example, by 2. What happens? Try some other values (make sure M is still 
even so that other numerical issues are not also happening). What is the next 
value above M = 1000, where the periodic functions are again sampled 
appropriately? 

6.7 Phase gratings: Unlike an amplitude grating, an ideal phase grating does not 
attenuate the incident light. Diffraction occurs because of periodic optical 
path length changes across the grating. A reflection grating can be modeled 
in the computer as a phase grating. Alter the grating_cos or 
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grating_sqr code to compute the Fraunhofer pattern for the transmittance 
functions that follow. Adjust the factor m; for example, 1, 2, and 4, and 
notice the effect on the Fraunhofer pattern. 
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6.8 Consider the following grating transmittance function: 
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(a) Implement this grating in a 1D simulation and compute the 
Fraunhofer pattern. Assume a grating frequency of 500 lines/mm [P 
= (1/500)  10−3) m], D1 = 0.1 mm, and  = 0.5 m. Choose the 
vector size and other sampling parameters. [Hint: An even number of 
samples—for example, 8—across each triangle function works well 
in this case.] 

(b) Derive a theoretical result for the Fraunhofer pattern for this grating 
(in 1D). Compare this result with the numerical result of part (a). 

(c) Implement the grating in an infinite periodic model. Plot the 
Fraunhofer pattern profile. Plot the power percentage result. 

 

6.6 References 

1. J. W. Goodman, Introduction to Fourier Optics, 3rd Ed., Roberts & 
Company, Greenwood Village, CO (2005). 
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Chapter 7 

Imaging and Diffraction-
Limited Imaging Simulation 
 
Imaging is about reproducing the field, or more often the irradiance pattern of an 
object or scene, at an image plane. Geometrical optics, where optical rays are 
assumed to travel in rectilinear fashion without diffraction, is used extensively in 
lens and optical system design. Geometrical optics provides useful relationships 
between the object and image locations and sizes and is also applied in the 
analysis of the pupils of an imaging system. A proficient approach for image 
modeling draws on both geometrical optics and diffraction theory. This chapter 
begins with a review of geometrical imaging concepts and relationships that are 
helpful for the imaging simulations that follow. 

7.1 Geometrical Imaging Concepts 

Not all optical systems form images. For example, a beam expander increases the 
size of a laser beam but doesn’t image. However, our concern is with imaging, 
and in order to form a real image, light from an arbitrary object point must be 
collected and focused at the image plane. For the imaging situation shown in Fig. 
7.1, the lens law (Gaussian form) describes the relationship needed under the 
paraxial condition (small ray angles relative to the optical axis) for “best focus” 
imaging: 
 

 
fzz
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 . (7.1) 

 
Here, f is the lens (or lens system) focal length, z1 is the distance along the optical 
axis from the object to the front principal plane of the lens, and z2 is the distance 
from the back principal plane to the image location. Principal planes are a virtual 
concept for geometrical lens analysis. They are normal to the optical axis. A ray 
incident on the front principal plane at some height from the optical axis will exit 
the back principal plane at the same height. In other words, principal planes are 
planes of unit magnification. For a “thin” lens, the front and back principal 
planes are co-located in the plane with the vanishingly thin lens. For a real (thick)  
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Figure 7.1 Geometrical imaging with a thin positive lens of focal length f. A cone of rays 
from the base or tip of the object are collected by the lens and directed to the 
corresponding image points.  

 
lens, the principal planes are, typically, in the vicinity of the lens but not co-
located. 

To form a real image, z1 and z2 are positive and the lens focal length f is 
positive. A “positive” lens (positive-valued f) converges light rays, whereas a 
“negative” lens (negative-valued f) diverges rays. Practical imaging systems 
often use combinations of lenses to control aberrations or for packaging reasons, 
but imaging still requires a positive focal length for the combined lens group. 

The ratio of the image height y2 to the object height y1 is known as the 
transverse magnification Mt , which for a single lens system is given by 
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The minus sign indicates an inverted image (y2 in Fig. 7.1 takes a negative value). 

An imaging system is also characterized by its pupils. Pupils are virtual 
apertures that indicate the “opening” available to collect light from the object 
(entrance pupil) and the “opening” from which the collected light exits on its 
way to form an image (exit pupil). The pupils are images of the physical element 
in the system, known as the aperture stop, which limits the collection of light. 
The lens is the stop for the system in Fig. 7.1, but for a different system it might 
be some other physical aperture. For this discussion, the importance of the stop is 
that it sets the fundamental diffractive effects in the image—it’s the thing that 
“cookie cutters” the incoming electric field. There are other system issues, such 
as aberrations, that further disrupt the image, but the diffractive effects due to the 
stop represent the fundamental performance limit of an imaging system. The stop 
and other system effects can all be incorporated in the pupils, so this concept is 
utilized for diffraction analysis. 

Figure 7.2 illustrates that the physical elements of a system (lenses, mirrors, 
iris, etc.) can be reduced to entrance pupil (EP) and exit pupil (XP) models. The 
distance from an object point on the optical axis to the EP is zEP and the distance 
from the XP to the axial image point is zXP. The entrance pupil diameter is DEP 
and the exit pupil diameter is DXP. Although Fig. 7.2 shows 

y1 

z1 z2 
y2 
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Figure 7.2 Entrance pupil (EP) and exit pupil (XP) model of an imaging system. 
 
the EP nearest the object, in fact, the order/location of the pupils and sizes 
depend on the optical system being considered. 

In a single thin lens system (Fig. 7.1), the principal planes, pupils, and lenses 
all lie in the same plane, so z1 = zEP and z2 = zXP, and also DEP = DXP = lens 
diameter. This is a useful case to fall back on when thinking about the examples 
in this chapter. But, to provide some food for thought, refer to Fig. 7.3, where an 
object is being imaged and an iris located behind the lens limits the collection of 
light. The iris is the stop, and the exit pupil (a virtual aperture) is co-located with 
the iris and has the same diameter as the iris. The EP is found by imaging the 
stop (iris) “back through” the lens, which in this case produces the virtual 
aperture (EP), as shown in Fig. 7.3. In this case the pupil and principal plane 
distances are different. 

One parameter that appears in expressions for the amount of light collected, 
aberration coefficients, spatial frequency content of an image, and other 
characteristics of an imaging system is the f-number (f /#). This parameter was 
briefly introduced in Chapter 6 in the discussion of lenses. There are several 
definitions for the f/# that are applicable in different situations, but for this 
discussion the most useful form is the paraxial working f/# given by 
 

 / # .XP

XP

z
f

D


 
(7.3)

 
   

 
 
 

Figure 7.3 Entrance pupil (EP) and exit pupil (XP) for a single lens system imaging an 
object where the iris is the stop. 
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This is a parametrization of the cone of rays that travel from the XP to the axial 
image point (Fig. 7.2). 
 
A summary of the key points of the geometrical optics discussion is as follows: 

(a)  The principal plane distances (z1, z2) define the transverse 
magnification of the image. 

(b)  The system aperture stop leads to the fundamental diffractive effects 
in the image. 

(c)  The pupil sizes (DEP, DXP) and distances (zEP, zXP) are incorporated in 
the diffraction analysis of the system. 

(d)  For a thin lens imaging system, z1 = zEP, z2 = zXP, and DEP = DXP = 
lens diameter. 

We refer the reader to other references for further discussions of principal planes, 
pupils, and geometrical optical imaging.1–3 

7.2 Coherent Imaging 

7.2.1 Coherent imaging theory 

Now for some Fourier optics. The general imaging arrangement considered is 
shown in Fig. 7.4. Imaging with coherent illumination, such as with a coherent 
laser, is described in its simplest form as a convolution operation involving the 
optical field. The process is expressed by4 
 
 ),(),(),( vuUvuhvuU gi  , (7.4) 

 
where u and v are the image plane spatial coordinates, Ui is the field at the image 
plane, and h is the coherent impulse response for the imaging system. Ug is the 
ideal geometrical-optics predicted image field, which is a scaled copy of the 
object field Uo(x, y), 
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Note that if Mt is negative, as in Eq. (7.2), then the resulting image will appear 
inverted relative to the object. In Eq. (7.4) the ideal geometrical field is “blurred” 
through the convolution with the impulse function. In the frequency domain the 
corresponding spectra for Eq. (7.4) are related by 
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Figure 7.4 Imaging simulation coordinate definitions. 

 
 
 ),(),(),( VUgVUVUi ffGffHffG  , (7.6) 

 
where H is the coherent image transfer function (or amplitude transfer function) 
and is defined as4 
 
 ( , ) ( , )U V XP U XP VH f f P z f z f    , (7.7) 
 
where P is the pupil function of the system, in this case the exit pupil since we 
are dealing with the image plane. Thus, the coherent transfer function takes on 
the attributes of the XP. A few comments about Eq. (7.7) follow: 

(a)  The negative signs in the pupil arguments give a scaled, inverted pupil 
function. This inversion is associated with the inversion of the ideal 
geometrical image indicated by Mt in Eq. (7.5). 

(b)  It is assumed that for any object point that the optical wave that leaves 
the XP is ideally a spherical wave converging to the image point. Thus, 
the pupil function is defined relative to an ideal spherical wavefront. 
Complex exponential terms are included in the pupil function to describe 
wavefront deviations from a sphere (covered in Chapter 8). 

(c)  The term diffraction limited is applied to a system with a perfect pupil 
function where only the boundaries of the pupil are involved with the 
diffractive effects. 

7.2.2 Coherent transfer function examples 

For the first example, consider a square pupil function given by  
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From Eq. (7.8) the coherent transfer function is given by 
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Since the rectangle function is symmetric, the negative signs can be ignored. The 
coherent cutoff frequency along the u or v direction is defined as 
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Spatial frequencies with absolute values greater than f0 will not be preserved in 
the image plane field. 

A second example is the circular pupil function given by 
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where wXP = DXP/2. The coherent transfer function is 
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or 
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where f0 is again the coherent cutoff frequency as defined in Eq. (7.10). Unlike 
the square aperture, the cutoff frequency in this case is the same radially in all 
directions in the frequency plane. 

To observe or record a coherent image, the irradiance given by Ii = |Ui|
2 is 

actually measured. As a result of the squaring operation, the irradiance image can 
theoretically gain up to twice the frequency content of the field—think about the 

fact that    2 1
2cos 2 1 cos 2 2bx bx       . So, when an irradiance image is 

formed, the following cutoff should be considered: 
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Given that 2wXP = DXP, and using Eq. (7.3), 
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7.2.3 Diffraction-limited coherent imaging simulation 

One approach for simulating coherent imaging on the computer is based on Eq. 
(7.4) and implemented as 
 
   ),(),(),( 1 vuUffHvuU gVUi   . (7.16) 

 
A simulation begins with a sampled “ideal” image, usually an image file that is 
opened in the script. The sampled ideal image is assumed to have a physical 
sample interval u and side length L. The highest spatial frequency available in 
the ideal image is the Nyquist frequency fN = 1/(2u), so a diffraction-limited 
simulation requires 
 
 02 Nf f . (7.17) 

 
This condition comes about because you can’t model spatial frequencies in the 
simulation that are not present in the ideal image. Applying Eq. (7.17), 
substituting for fN and rearranging gives a criterion for the sample interval 
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Given L = Mu, where M is the number of samples, then 
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The constraint in Eq. (7.17) can be rather restrictive. Let’s look at an 

example. Consider a thin lens with a diameter of 12.5 mm, a focal length of 125 
mm, and in which the wavelength of interest is 0.5 m. Assume a 250  250 
sample array for an imaging simulation. First, calculate the f-number: 
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Inserting the values in Eq. (7.18) yields 
 

 μm5.2
2

10μm5.0
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
u , (7.21) 

 
and the side length constraint is, therefore, 
 

 250 2.5μm 0.625mmL     . (7.22) 
 

Thus, the image plane size is limited to 0.625  0.625 mm—a relatively small 
area. Working with a larger array increases the image size. For example, with a 
2048  2048 sample array, the maximum image plane size would be 5.12  5.12 
mm—still a relatively small area. This illustrates that the Fourier optics-based 
simulation described here examines a small part of the image plane for near-
diffraction-limited performance. However, a very large array is needed to model 
a modest field of view, which might correspond to an image size of, say, 10 or 20 
mm in this case. 
 Let’s work up some code. The first thing we need is the ideal image. I use a 
250 × 250 pixel .png image file that depicts a USAF 1951 resolution test chart. 
Actual test charts are printed on a glass substrate, and the USAF 1951 is still used 
today for testing lenses and optical systems. This file can be downloaded at 
http://www.ece.nmsu.edu/~davvoelz/cfo/. Similar images of the chart can also be 
found on the internet, or you can use another image file of your choosing, 
although preferably something with a variety of feature sizes. 

In MATLAB start a new file named “coh_image” and enter the following: 
 

1 %  coh_image Coherent Imaging Example  
2  
3 A=imread('USAF1951B250','png'); %read image file 
4 [M,N]=size(A);         %get image sample size 
5 A=flipud(A);           %reverse row order 
6 Ig=single(A);          %integer to floating 
7 Ig=Ig/max(max(Ig));    %normalize ideal image 
8  
9 ug=sqrt(Ig);           %ideal image field 
10 L=0.3e-3;              %image plane side length (m) 
11 du=L/M;                %sample interval (m) 
12 u=-L/2:du:L/2-du; v=u; 
13  
14 figure(1)              %check ideal image 
15 imagesc(u,v,Ig); 
16 colormap('gray');  xlabel('u (m)'); ylabel('v (m)'); 
17 axis square 
18 axis xy 
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In this code, imread loads the image file USAF1951B250.png into the 
temporary array A. As coded here, the image file needs to be resident in the 
current directory. This code assumes the image is a grayscale image (M  M  1) 
as opposed to an RGB image (M  M  3). If you use your own image with a 
different format, the format may need to be converted or the script set up to use it 
appropriately. Also, note that later code in coh_image assumes the ideal image 
is square in format with an even number of samples along a side. Changes such 
as defining separate u and v coordinate vectors are needed if the image is not 
square. 

Since an image is conventionally stored with the top row first, the flipud 
function is used to reverse the order of the rows of A so the bottom of the image 
corresponds to the negative v coordinates. The single command converts the 
.png integer pixel values to floating point. The max command, applied twice to 
find the maximum value of a 2D array, is used to set the peak image value to 
unity for reference. 

Since the image file represents an irradiance image, take the square root to 
get the magnitude of the field. This actually has no effect on this particular test 
chart image since after normalization it only contains zeros and ones. Beyond 
that, a phase component can be included to simulate a complex coherent field, 
but that comes in the next section. For now, zero phase is assumed across the 
ideal image. 

The side length is L = 0.3 mm, which satisfies Eq. (7.22), and with M = 250 
the sample interval is u = 1.2  10−6 m. The ideal test chart image is shown in 
Fig. 7.5. 
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Figure 7.5 USAF test chart ideal image. 
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Continue with coh_image and add the following code to define the imaging 
system parameters and generate the coherent transfer function: 
 

19 lambda=0.5*10^-6;      %wavelength 
20 wxp=6.25e-3;           %exit pupil radius 
21 zxp=125e-3;            %exit pupil distance 
22 f0=wxp/(lambda*zxp);   %cutoff frequency 
23  
24 fu=-1/(2*du):1/L:1/(2*du)-(1/L); %freq coords 
25 fv=fu; 
26 [Fu,Fv]=meshgrid(fu,fv); 
27 H=circ(sqrt(Fu.^2+Fv.^2)/f0); 
28  
29 figure(2)              %check H 
30 surf(fu,fv,H.*.99) 
31 camlight left; lighting phong 
32 colormap('gray') 
33 shading interp 
34 ylabel('fu (cyc/m)'); xlabel('fv (cyc/m)'); 

 
Visible wavelength illumination is assumed, as is a pupil radius of 6.25 mm with 
an XP distance of 125 mm. For the f /10 lens the following are computed: 

  fN = 1/(21.2  10−6) = 4.17  105 cycles/m, 

 2f0 = 1/(0.5  10−610) = 2  105 cycles/m, 

  f0 = 1  105 cycles/m. 

Thus, Eq. (7.17) is satisfied. The coherent transfer function is displayed in Fig. 
7.6. If Eq. (7.17) were violated, the pupil function in Fig. 7.6 would reach beyond 
halfway to the array boundaries. The combination of surface plotting and lighting  

 
 

Figure 7.6 Coherent transfer function. 
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commands in the script help improve the display of H. In MATLAB Version 7.1 
the surf (or mesh) commands have trouble displaying circle functions of unit 
height. Changing the height slightly (* 0.99) allows the plot to display. 

Add the following to generate the simulated image: 
 

35 H=fftshift(H); 
36 Gg=fft2(fftshift(ug)); 
37 Gi=Gg.*H; 
38 ui=ifftshift(ifft2(Gi)); 
39 Ii=(abs(ui)).^2; 
40  
41 figure(3)              %image result 
42 imagesc(u,v,nthroot(Ii,2)); 
43 colormap('gray'); xlabel('u (m)'); ylabel('v (m)'); 
44 axis square 
45 axis xy 
46  
47 figure(4)              %horizontal image slice 
48 vvalue=-0.8e-4;       %select row (y value) 
49 vindex=round(vvalue/du+(M/2+1)); %convert row index 
50 plot(u,Ii(vindex,:),u,Ig(vindex,:),':'); 
51 xlabel('u (m)'); ylabel('Irradiance'); 

 
In this piece of code Eq. (7.16) is implemented. The resulting image is displayed 
in Fig. 7.7, where the square root of the irradiance nthroot(Ii,2) is applied 
to boost the contrast. The features are blurred and some of the three-bar groups 
are unresolved. Constructive and destructive interference produce “ringing” 
features. 
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Figure 7.7 Simulated diffraction-limited coherent image (contrast enhanced). 
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 The last portion of the code displays a profile of a row in the image. A 
physical v-axis coordinate value (vvalue) is selected, and the nearest array 
index value is found. The round function rounds a floating point value to the 
nearest integer. The plot compares the ideal and simulated image profiles. 

In Fig. 7.7 the three bars of Group −2, Element 6, appear to be the smallest 
group that is “resolved.” Selecting the v-coordinate of −0.810−4 m in the profile 
code gives the display in Fig. 7.8. The large bars of Group −2, Element 1 are 
clearly resolved but with some obvious ringing effects. Element 6 vertical bars 
are resolved but with much less contrast. 

Some resolution “sleuthing” can be done as a sanity check. Expand the 
profile plot and observe that the Element 6 bars have a period of roughly 1  10−5 
m. Inverting the period gives a corresponding spatial frequency of ~ 1  105 
cycles/m. This is the same as the coherent cutoff f0 = 1  105 cycles/m. Even 
though the square magnitude of the field is taken for the irradiance, the apparent 
resolution in this kind of simulated coherent irradiance image, typically, appears 
close to the coherent cutoff. 

Figure 7.9 shows a sequence of image spectra with the coherent transfer 
function and resulting irradiance images for different pupil sizes/f-numbers. The 
log of the spectra magnitude is displayed to bring out low contrast details. 

7.2.4 Rough object 

In the previous section the test chart was assumed to be a “binary” object where 
the source field amplitude is either zero or unity. Furthermore, the phase of the 
source field across the chart was constant (equal to zero). However, when a  
 

-1.5 -1 -0.5 0 0.5 1 1.5

x 10
-4

0

0.5

1

1.5

u (m)

Ir
ra

di
an

ce

 
 
Figure 7.8 Row profile of simulated coherent image and ideal image at v = −0.8 x 10−4 m. 
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Figure 7.9 Coherent image spectral magnitude (left column, log scaled) and associated 
irradiance images (right column). Image scale is the same as Fig. 7.7. 
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physical object is illuminated with coherent light, its micro-surface properties can 
have a considerable effect on the diffracted field. Most surfaces are “rough” 
relative to the size of the optical wavelength. In other words, the random dips and 
bumps of a surface, unless it is machined like a mirror, are large enough that an 
incident plane wave reflecting from one dip will have a significantly different 
phase from the portion of the wave that reflects off a bump. 

A simple way to model this effect is to apply a random complex exponential 
phase term to the object (ideal image) field. Make the following change to ug in 
coh_image: 
 

ug=sqrt(Ig).*exp(j*2*pi*rand(M)); %ideal image 
 
The rand function produces an MM array of random values of uniform 
distribution over the interval [0,1]. Multiplying by 2 scales the values to range 
over all possible phase values [0,2]. Therefore, every sample point has a phase 
that is independent and uncorrelated from every other point. This phase function 
represents a random surface that is “extremely rough” relative to the optical 
wavelength. 

The code now produces the irradiance image of Fig. 7.10. The coherent 
interference of the wavelets coming off the rough surface produce what is know 
as “speckle,” a random jumble of spots, dots, and squiggles. Coherent speckle is 
a well-known phenomenon.5 You can experience speckle effects for yourself by 
shining a laser pointer at a wall and moving the spot slightly, or by shifting your 
head. The sparkling is a speckle effect. Figure 7.10 illustrates that speckle can 
seriously impede the ability to interpret, or gain, information from an image. 
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Figure 7.10 Simulated coherent image of an object with a rough surface. 
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7.3 Incoherent Imaging 

7.3.1 Incoherent imaging theory 

Imagine that an object is represented by a collection of randomly radiating point 
sources. The object may actually be illuminated by a source, like the sun, but 
ultimately the field exiting the object surface involves a spectrum of wavelengths 
and randomly changing phase in time. Interference features produced by this type 
of source are not stationary but change rapidly, so they are “averaged out” by a 
sensor responding to the time-averaged squared magnitude of the field. Perfectly 
incoherent light refers to the situation where the complex field phasors from the 
radiating point sources are stochastically independent; where there is no 
correlation between the field phasors at different points or times. To visualize 
this idea, imagine the speckles in the image of Fig. 7.10 changing randomly and 
rapidly in time. With enough averaging the image texture will tend to become 
smooth. 

Assuming incoherent illumination of an object, the linear, space invariant 
model for imaging becomes4 
 

    vuIvuhvuI gi ,,),(
2  , (7.23) 

 
where h is the same coherent impulse response indicated in Eq. (7.4) and Ig is the 
ideal geometric irradiance image. In contrast to coherent imaging, which is linear 
with the field, incoherent imaging is linear with irradiance. The impulse response 
|h(u, v)|2 is commonly known as the point spread function (PSF). The discussion 
here is restricted to light with only a small wavelength spread around a center 
wavelength of . 

The corresponding spectra of the functions in Eq. (7.23) are related by 
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where H is known as the optical transfer function (OTF). By convention, the 
OTF is normalized as follows: 
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Considering the Fourier autocorrelation theorem for the numerator, the OTF is a 
normalized autocorrelation of the coherent transfer function  VU ffH , . The 
normalization amounts to scaling the OTF to have a value of 1 at the DC 
frequency, (fU, fV) = (0,0). This means the OTF is not assumed to affect the total 
optical power associated with the ideal geometrical image. 
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 In shorthand notation, where  indicates a correlation, the OTF can be 
written as 
 

  VUVU ffHff ,),( H   ,U V normH f f . (7.26) 

 

7.3.2 Optical transfer function examples 

Starting with the coherent transfer function of Eq. (7.9) for the square pupil, the 
Fourier autocorrelation theorem can be applied to find the OTF. First, the Fourier 
transform then takes the squared modulus: 
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The inverse transform of Eq. (7.27) gives the autocorrelation function: 
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Removing the front multiplying terms gives a normalized function with unit 
value at zero frequency, so the OTF is 
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where the incoherent cutoff frequency for this OTF is 
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which is twice the coherent cutoff frequency for this aperture. The incoherent 
cutoff is the same as the cutoff suggested in Eq. (7.14). 

What about the circular pupil function for the coherent example in Section 
7.2.2? For its OTF, the normalized autocorrelation of the coherent transfer 
function in Eq. (7.13) is needed. This is not easy to find directly, but a graphical 
correlation approach is applied in this case with the result4 
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where 22
VU ff   and the incoherent cutoff is given by 

 

 0

2 1
2

/ #
XP

XP

w

z f


 
  . (7.32) 

7.3.3 Diffraction-limited incoherent imaging simulation 

An incoherent image simulation based on Eq. (7.23) can be implemented as 
 
   ),(),(),( 1 vuIffvuI gVUi   H . (7.33) 

 
The incoherent simulation follows the same form as the coherent case since the 
OTF is developed from the coherent transfer function. The criterion of Eq. (7.17) 
still applies. The following script, “incoh_image,” uses the same parameters as 
the coherent example in Section 7.2.3: 
 

1 %  incoh_image Incoherent Imaging Example  
2  
3 A=imread('USAF1951B250','png'); %read image file 
4 [M,N]=size(A);         %get image sample size 
5 A=flipud(A);           %reverse row order 
6 Ig=single(A);          %integer to floating 
7 Ig=Ig/max(max(Ig));    %normalize ideal image 
8  
9 L=0.3e-3;              %image plane side length (m) 
10 du=L/M;                %sample interval (m) 
11 u=-L/2:du:L/2-du; v=u; 
12  
13 lambda=0.5*10^-6;      %wavelength 
14 wxp=6.25e-3;           %exit pupil radius 
15 zxp=125e-3;            %exit pupil distance 
16 f0=wxp/(lambda*zxp);   %coherent cutoff 
17  
18 fu=-1/(2*du):1/L:1/(2*du)-(1/L); %freq coords 
19 fv=fu; 
20 [Fu,Fv]=meshgrid(fu,fv); 
21 H=circ(sqrt(Fu.^2+Fv.^2)/f0); 
22 OTF=ifft2(abs(fft2(fftshift(H))).^2); 
23 OTF=abs(OTF/OTF(1,1)); 
24  
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25 figure(2)              %check OTF 
26 surf(fu,fv,fftshift(OTF)) 
27 camlight left; lighting phong 
28 colormap('gray') 
29 shading interp 
30 ylabel('fu (cyc/m)'); xlabel('fv (cyc/m)'); 
31  
32 Gg=fft2(fftshift(Ig)); %convolution 
33 Gi=Gg.*OTF; 
34 Ii=ifftshift(ifft2(Gi)); 
35 %remove residual imag parts, values <  0 
36 Ii=real(Ii); mask=Ii>=0; Ii=mask.*Ii;  
37  
38 figure(3)              %image result 
39 imagesc(u,v,nthroot(Ii,2)); 
40 colormap('gray'); xlabel('u (m)'); ylabel('v (m)'); 
41 axis square; 
42 axis xy; 
43  
44 figure(4)              %horizontal image slice 
45 vvalue=0.2e-4;         %select row (y value) 
46 vindex=round(vvalue/du+(M/2+1)); %convert row index 
47 plot(u,Ii(vindex,:),u,Ig(vindex,:),':'); 
48 xlabel('u (m)'); ylabel('Irradiance'); 

 
Some comments on this code: 

(a)  Line 7: Ig is required rather than Ug. 
(b)  Line 22: The OTF is calculated by applying the autocorrelation 

theorem. 
(c)  Line 23: The OTF is normalized by the zero-frequency value of the 

autocorrelation result. Note that the OTF is left in the shifted 
arrangement. 

(d)  Line 36: The computed Ii should be positive and real valued. But, 
numerical precision can produce small imaginary and negative 
values in the results. This is not a big problem except that the 
imagesc and plot routines don’t like them—so they are set to 
zero in the script. 

 
The diffraction-limited OTF is shown in Fig. 7.11 and the resulting image is 
shown in Fig. 7.12. Compared with the coherent image of Fig. 7.7, the resolution  
is better (see the bars of Group −1, Element 3) and there are no ringing features. 

Figure 7.13 shows an x-axis profile through the image at the row 
corresponding to y = 0.2  10−4 m. It appears the bars of Group −1, Element 3, 
are just resolved. An examination of these bars yields a spatial frequency of ~ 1.7 
 105 cycles/m, which is slightly smaller than—but on the order of—the 
incoherent cutoff of 2  105 cycles/m. Figure 7.14 shows a set of incoherent 
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images for the same series of f-numbers used in the coherent image display of 
Fig. 7.9. Incoherent light certainly improves the image quality in this case. 

 

 
 

Figure 7.11 Incoherent transfer function. 
 

 
 

Figure 7.12 Simulated diffraction-limited incoherent image (contrast enhanced). 
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Figure 7.13 Row profile of simulated incoherent image and ideal image at 
v = 0.2 x 10−4 m. 

7.4 Exercises 

7.1 Consider a thin lens of radius 10 mm and focal length f = 50 mm. An object 
is positioned 200 mm from the lens.  

(a) What is the image distance (back principal plane to image location)? 
What is the transverse magnification? 

(b) What are DXP and zXP? What is the f/#? 

(c) Suppose the object distance is increased such that z1 >> f, what is the 
approximate image distance? 

 
7.2 Suppose DXP = 1/2 in. and zXP = 4 in. for a wavelength of 0.587 m. 

(a) What is the f/#? What are the coherent and incoherent cutoff 
frequencies? 

(b) What is the sample interval requirement for an ideal image in a 
diffraction-limited simulation? 

(c) If the ideal image size corresponds to a side length of 1 mm, what is 
the requirement for the number of samples across the ideal image 
array in a simulation? 

Group -1 
Element 3 

Group -2 
Element 3 
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Figure 7.14 Incoherent image spectral magnitude (left column, fifth root scaled) and 
associated irradiance images (right column). Image scale is the same as Fig. 7.11. 

f/5 
2f0 = 4105 m−1 

Ideal 
fN  = 4.17105 m−1  

f/10 
2f0 = 2105 m−1 

f/20 
2f0 = 1105 m−1 
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7.3 Assume zXP = 50 mm,  = 0.5 m, and a rectangular XP with half widths of 
wx = 1 mm and wy = 0.5 mm. Use L = 1 mm and M = 250. 

(a) What are the coherent and incoherent cutoff frequencies (x and y 
directions)? 

(b) Develop a diffraction-limited coherent image simulation with the test 
chart as the image. Present a surface plot of the coherent transfer 
function and the simulated coherent image. 

(c) Develop a diffraction-limited incoherent image simulation with the 
test chart as the image. Present a surface plot of the OTF and the 
simulated incoherent image. 

(d) Is a spatial resolution difference in the x and y directions apparent? 
 
7.4 Assume zXP = 50 mm,  = 0.5 m, and an annular XP with an outer radius 

of wo = 1 mm and an inner radius of wi = 0.5 mm. Use L = 1 mm and M = 
250. 

(a) What are the coherent and incoherent cutoff frequencies? 

(b) Develop a diffraction-limited coherent image simulation with the test 
chart as the image. Present a surface plot of the coherent transfer 
function and the simulated coherent image. 

(c) Develop a diffraction-limited incoherent image simulation with the 
test chart as the image. Present a surface plot of the OTF and the 
simulated incoherent image. 

(d) What is the effect of “losing” the DC and low spatial frequency 
components with the coherent image transfer function? 

 
7.5 Concerning the rough object coherent image simulation in Section 7.3.3: 

(a) Suppose the object is “not so rough” compared to the optical 
wavelength. Reduce the 2 multiplier for the random number 
function. What is the effect on the irradiance image? Explain the 
result. 

(b) What is the effect on the irradiance image of changing the aperture 
size? Explain the result. 

 

7.6 Diffraction-limited PSF (Airy pattern): Consider the coherent image transfer 
function  vu ffH , for a circular aperture given in Eq. (7.13). 

(a) Derive an expression for the impulse response  vuh , . 

(b) Find an expression for the incoherent PSF. Show that this result is of  
the same form as the Airy pattern derived in Eq. (4.35). 
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(c) Show that the full width of the central lobe of the Airy pattern PSF is 
equal to 2.44( f/#). 

 
7.7 Rayleigh resolution criterion: Spatial frequency cutoff values imply 

something about the diffraction-limited resolution for an imaging system. 
However, there are a number of specific metrics for characterizing 
resolution, for example, the PSF and modulation transfer function (MTF) to 
be discussed in Chapter 8. Another metric, the Rayleigh criterion, postulates 
that two incoherent point sources are “just resolved” by a diffraction-limited 
system with a circular pupil when the point images are separated by half the 
center lobe width of the Airy pattern. The full width of the Airy pattern is 
2.44 f/# (see Exercise 7.6). Taking half this value gives the Rayleigh 
criterion distance as  
 
  1.22 / #f  . 

 
Test this expression empirically with a simulation based on the example 
incoherent system of Section 7.4.3. Choose wXP such that f/# = 20. 

(a) Calculate the value of . 

(b) For the image plane sample interval u in the example, how many 
samples S are required to span the distance  ? 

(c) Create an ideal image frame consisting of two point sources 
separated by . It is easier in this case to work with the array indices 
rather than the physical units. Try some lines like 

     Ig=zeros(M); 
     Ig(M/2+1,M/2+1-S/2)=1; 
     Ig(M/2+1,M/2+1+S/2)=1; 

(d) Run the image simulation. Be sure to choose wXP such that f/# = 20. 
Are the two points resolved? Plot a profile through the two-point 
irradiance pattern. 

 
7.8 Object space: In some situations it is convenient to discuss the spatial 

frequency cutoff or image resolution in terms of the object coordinates. For 
example, the resolution of Earth-imaging satellites is discussed in terms of 
resolution at the Earth’s surface, not at the image plane. To convert the 
cutoff and resolution expressions from an image plane reference to an object 
plane reference, simply substitute the object space f-number (f/#OBJ) for the 
image space f-number (f/#). The object space f-number is 
 

 / # EP
OBJ

EP

z
f

D
 . 
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Consider a telescope on a satellite orbiting the Earth at an altitude of 700 
km. The telescope is directed toward the surface and has a primary mirror 
diameter of 1 m. The mirror is the entrance pupil. Assume  = 0.5 m. 

(a) What is f/#OBJ? 

(b) Determine the incoherent cutoff frequency. Find a value for the 
Rayleigh resolution distance  (see Exercise 7.6). 

(c) What is the maximum sample interval that can be used in a 
simulation of the object plane? What is the corresponding object 
plane side length for a 1024  1024 array? 

 
7.9 Phase Contrast Imaging: Objects such as living cells, microorganisms, and 

lithographic patterns are essentially transparent, although their features can 
have differing indices of refraction. A conventional image of this type of 
object will not reveal the features. However, a phase contrast imaging 
method, often used in microscopy, converts the small phase changes (optical 
path differences) produced by the object into irradiance changes that can be 
detected. More details on this imaging approach can be found in Ersoy or 
Hecht, for example.6,7 
  A simple arrangement to demonstrate phase contrast imaging is shown in 
Fig. 7.15. An optical Fourier transform [see Eq. (6.19) and related 
discussion] is taken of the phase object with lens 1 (focal length f), and the 
DC part of the transformed field is altered with a phase “dot” plate. Lens 2 
performs a second transform to produce the image. 
  The general idea is to phase shift the mean part of the object field by a 
fraction of a wavelength, usually /2 or 3/2, with the phase plate. The 
mean field “interferes” with the phase-modulated field structure at the 
image plane to translate phase variations into irradiance variations. Write 
some code to simulate this setup following these steps: 
 
 

 
 
 

Figure 7.15 Phase contrast image arrangement. 
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(a) Read in the test chart USAF1951B250.png as in coh_image but 
convert it to a unit magnitude phase object ug(x,y) = exp[j(x,y)] 
with the following: 

     theta=sqrt(Ig)*pi/100; 
     ug=exp(j*theta); 

(b) Directly generate the irradiance pattern of this object (simply 
compute the squared magnitude) and examine the result using 
imagesc. Also examine a profile. These results should show a 
constant value of 1. However, recall that imagesc stretches (or 
contracts) the full range of image values to be displayed in 256 gray 
levels. Thus, some indications of the object features may be present 
due to numerical precision error, but these variations are extremely 
small in absolute value. 

(c) Assume the object is back-illuminated by a unit amplitude wave. 
Simulate the effect of lens 1 [i.e., compute the fast Fourier transform 
(FFT) of the phase object]. Coordinate and amplitude scaling can be 
ignored for this exercise. Multiply the DC point by exp(j), where  
= /2. Compute the inverse FFT of the result to simulate the effect of 
lens 2. Lens 2 actually performs a forward transform, which 
produces an image that is rotated 180 deg relative to the object. 
However, the inverse FFT is used in the simulation to keep the image 
orientation the same as the object. Examine the image irradiance 
pattern and a profile through the pattern. The results should be 
approximately given by Ii (x,y)  1+2(x,y). When  = /2, this is 
referred to as the positive phase contrast mode. 

(d) Repeat (c) but use  = 3/2, which is referred to as the negative 
phase contrast mode. Demonstrate with profile plots that the 
simulation result is approximately given by Ii (x,y)  1–2(x,y). 

(e) Try other values of . What is the effect of changing ? 

 
7.10 Holography: Holography refers to an irradiance recording, traditionally on a 

piece of film, that can be “played back” to recreate the optical field radiating 
from an object of interest. By recreating the field, the recorded object as 
seen by an observer will exhibit some of the same characteristics as viewing 
a real object, such as 3D depth. Here, a version of a Fourier hologram is 
considered (Fig. 7.16). 

  For the recording, an object is illuminated with coherent light (usually a 
plane wave). To the side of the object a small spherical mirror intercepts 
some of the illumination beam and sends a spherical wave back toward the 
lens. The mirror, in effect, emulates a reference point source. The 
Fraunhofer pattern of the illuminated object/point source is created at the 
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Figure 7.16 Fourier hologram scheme. 
 

film plane by the lens. The film records the irradiance pattern and is 
processed so its transmittance function replicates the irradiance. For the 
playback, the film is illuminated by a coherent plane wave and a lens is used 
to form the Fraunhofer pattern of the transmitted wavefront.  
 
Follow these steps to simulate the Fourier hologram process: 
 

(a) Use M = 500, L = 10 mm to define the x- and y-coordinate vectors 
for the object array. Use shifted rect functions and the udelta 
function to create the object and point source in the array as 
diagramed in Fig. 7.17. Display an image of the object array to check 
your layout. 

(b) Multiply the point source by 1000. A bright reference aids in 
creating the hologram. 

(c) To simulate the effect of the recording lens, simply compute the FFT 
of the object array. Coordinate and amplitude scaling can be ignored 
for this exercise. Compute the squared magnitude of the result to 
emulate the irradiance recording by the film. 
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Figure 7.17 Holography example object and reference point source. Centering 
coordinates are indicated with parentheses. 

 
(d) Assume the film is illuminated by a unit amplitude plane wave for 

playback (this requires no action on your part). To get the image 
plane result, compute the inverse FFT of the result from step (3). 
You may also need to consider fftshift. The playback lens 
actually performs a forward transform, which produces a 180-deg 
rotated image. However, the inverse FFT is used here to keep the 
image orientation the same as the object. 

(e) The result of step (4) should have a bright point on what is 
effectively the optical axis. This point corresponds to all of the 
energy from the playback beam that is still planar after passing 
through the film. It causes display difficulties, so set it to zero. 

(f) Display the result of step (5) in an image. 
 
     The Fourier hologram produces an image of the object, a “conjugate” 
image of the object, and an autocorrelation-related result in the middle. A 
few questions to consider: Do you suppose you could see only the image of 
the object if the playback lens were removed and you positioned your eye 
appropriately? Do you recognize this Fourier hologram process as simply an 
implementation of the Fourier autocorrelation theorem? 
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Chapter 8 

Wavefront Aberrations 
 
 
The pupil function for the diffraction-limited imaging system model of Chapter 7 
is defined relative to an ideal converging spherical wavefront. A system with 
aberrations has a wavefront phase surface that deviates from the ideal spherical 
wave. Aberrations are found in most practical imaging systems, and their effect 
reduces image quality. If aberrations are significant, then a ray (geometrical) 
optics approach typically is used for studying image effects. However, if the 
system is “relatively close” to diffraction limited, then wave optics can be the 
tool of choice. In this chapter the diffraction-limited imaging theory is extended 
to include aberrations. The incoherent point spread function (PSF) and 
modulation transfer function (MTF) are discussed and demonstrated as image 
quality measures. Aberrated systems tend to cause space-variant imaging, where 
the impulse response is not the same for each image point. An example of a 
space-variant image simulation is presented. 

8.1 Wavefront Optical Path Difference 

Figure 8.1 shows the exit pupil (XP) with an ideal spherical (sp) wavefront and 
aberrated (ab) wavefront in profile. The wavefront error is described by W(x,y), 
an optical path difference (OPD) function that represents the difference between 
the spherical and aberrated wavefront surfaces. x and y are coordinates in the 
pupil plane. 
 Aberrated wavefronts arise from various sources. Obvious examples are 
imperfections in the imaging optics. For systems that peer through the 
atmosphere, the wavefront disturbances caused by the turbulence can be 
characterized in terms of aberrated wavefronts. 

However, even when optical components are made exactly to specification, 
aberrations will be present. For example, chromatic aberration, where different 
wavelengths focus at different positions, is caused by the wavelength dependence 
of the index of refraction of glass. Furthermore, if a system images an extended 
object scene, light from off-axis points must transit the system at an angle 
relative to the optical axis, and this generates a departure from a spherical wave. 
 Wavefront OPD is commonly described by a polynomial series. The Seidel 
series is used by optical designers because the terms have straightforward 
mathematical relationships to factors such as lens type and position in the image 



142  Chapter 8 

 
 

Figure 8.1 Spherical (sp) and aberrated (ab) wavefronts. 
 
plane. Another series, Zernike polynomials, is used in optical testing and 
applications where the aberrations do not have a simple dependency on the 
system parameters. This series possesses useful properties such as orthogonal 
terms. Both formulations assume a circular pupil. 

 In this chapter wavefront OPD is incorporated in the image system pupil 
function. Monochromatic aberrations are considered, where color is not involved. 
The topic is initially approached by considering the primary Seidel aberrations. 

8.2 Seidel Polynomials 

8.2.1 Definition and primary aberrations 

Seidel polynomials are often used to describe monochromatic aberrations for 
rotationally symmetric optical systems, such as most lenses and mirrors. A 
common form that is applied in conventional imaging systems is described by1, 2 
 

 mnlmjkuWuW mlk

nmj
mlk   2,2;cosˆ),;ˆ( 00

,,

 , (8.1) 

 
where  is a normalized radial distance in the XP and  is the angle in the XP as 
shown in Fig. 8.2(a). For computational reasons the angle  is defined here 
relative to the x axis in a counter-clockwise direction. However, note that this 
angle is often defined relative to the y axis in traditional aberration treatments.2 
The normalized XP has a radius of 1 where the physical coordinates (x, y) are 
divided by the XP radius to get normalized coordinates )ˆ,ˆ( yx . 0û  is a fractional 

image height, or normalized image height, defined along the û  axis in the 
imaging plane as indicated in Fig. 8.2(b). The fractional image height is the 
physical height of a given point in the image divided by the maximum image 
radius being considered. 
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 (a) (b) 
 
Figure 8.2 Seidel aberration coordinate definitions for the normalized (a) exit pupil and 
(b) image plane. 
 

Since the Seidel polynomials assume a rotationally symmetric system, the 
pupil and image plane coordinate systems are simply rotated to find the 
wavefront OPD function for an image point that is off the û axis. 

The indices j, m, n, and so forth, in Eq. (8.1) are a numbering and power 
scheme. Wklm are the wavefront aberration coefficients, and the five primary 
Seidel aberrations correspond to k + l = 4. These primary aberrations are known 
as spherical aberration, coma, astigmatism, field curvature, and distortion. The  
coefficients have units of distance (m), although they are usually discussed 
relative to the optical wavelength (i.e., so many “waves”). Our interest is in 
simulating the effects of these aberrations, so we refer the reader to other 
resources, for example, references 1–4, for more specific discussion and insight 
regarding the primary aberrations. 

For simulation purposes it is convenient to convert from polar to Cartesian 
coordinates. Referring to Fig. 8.2, 

 

 22 ˆˆ yx   and x̂cos  , 

 
and the primary aberrations are then written 
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The first term in this series is not one of the five primary aberrations, but is a  
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Table 8.1 Seidel aberrations. 
 

Aberration Coefficient W(x,y) term 

Defocus Wd  22 ˆˆ yxWd   

Spherical W040  222
040 ˆˆ yxW   

Coma W131  xyxuW ˆˆˆˆ 22
0131   

Astigmatism W222 22
0222 ˆˆ xuW  

Field curvature W220  222
0220 ˆˆˆ yxuW   

Distortion W311 xuW ˆˆ 3
0311  

 
defocus term. It is the wavefront OPD that is “created” in moving the image 
plane along the optical axis from the paraxial focus position. 
 Table 8.1 names and lists the Seidel aberration terms. Spherical aberration is 
caused by using a spherical surface (lens or mirror surface) to converge light. It 
may seem this should yield a spherical wavefront but, in fact, it doesn’t. The 
other aberrations are functions of the fractional image height. An examination of 
the expressions shows each coefficient is equal to the OPD at the edge of the 
pupil (where 1ˆˆ 22  yx  and/or 1ˆ x ) for the wavefront that is traveling to the 

maximum height image position ( 1ˆ0 u ). 

8.2.2 MATLAB function  

The following function “seidel_5” evaluates  yxvuW ˆ,ˆ;ˆ,ˆ 00 : 
 

1 function[w]=seidel_5(u0,v0,X,Y,... 
2             wd,w040,w131,w222,w220,w311) 
3 % seidel_5 
4 % Compute wavefront OPD for first 5 Seidel wavefront 
5 % aberration coefficients + defocus 
6 % 
7 % 
8 % u0,v0 - normalized image plane coordinate 
9 % X,Y - normalized pupil coordinate arrays 
10 %         (like from meshgrid) 
11 % wd-defocus; w040-spherical; w131-coma; 
12 % w222-astigmatism; w220-field curvature; 
13 % w311-distortion 
14  
15 beta=atan2(v0,u0);     % image rotation angle 
16 u0r=sqrt(u0^2+v0^2);   % image height 
17  
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18 % rotate grid 
19 Xr=X*cos(beta)+Y*sin(beta); 
20 Yr=-X*sin(beta)+Y*cos(beta); 
21  
22 % Seidel polynomials 
23 rho2=Xr.^2+Yr.^2; 
24 w=wd*rho2+... 
25     w040*rho2.^2+... 
26     w131*u0r*rho2.*Xr+... 
27     w222*u0r^2*Xr.^2+... 
28     w220*u0r^2*rho2+... 
29     w311*u0r^3*Xr; 
30 end 

 
 Inputs to this function are the image plane point of interest given by the 
normalized coordinate pair  00 ˆ,ˆ vu , the normalized pupil coordinates in the form 

of the X and Y arrays like those generated by meshgrid, and the aberration 
coefficients. The coefficients could easily be put into a vector, but are listed here 
for simplicity. In lines 19 and 20, a rotation transformation, where 

)ˆ/ˆ(tan 00
1 uv , is applied to align the pupil coordinate system with the image 

plane point. The routine calculates values for the full grid of pupil coordinates, 
even beyond a radius of 1. These extraneous values can be removed later. 

The following piece of code can be used to create surface plots to visualize 
the wavefront functions for different inputs. Several examples are presented in 
Fig. 8.3. Note the use of the “not a number” (NaN) function and logical indexing 
to remove the values outside the unit circle pupil. 
 

u0=1; v0=0; 
wd=0; w040=1; w131=0; w222=0; w220=0; w311=0; 
w=seidel_5(u0,v0,X,Y,wd,w040,w131,w222,w220,w311); 
P=circ(sqrt(X.^2+Y.^2)); 
mask=(P==0); 
w(mask)=NaN; 
 
figure(1) 
surfc(x,y,w) 
camlight left; lighting phong;  
colormap('gray'); shading interp; 
xlabel('x'); ylabel('y'); 
 

Try plotting some wavefront OPD surfaces. Choose a reasonable number of 
samples and a side length of 2. Figure 8.3 illustrates that spherical aberration 
(W040) and field curvature (W220) are wavefront curvature-like terms that are 
spherically symmetric with respect to the pupil coordinates. Coma (W131) and 
astigmatism (W222) are not spherically symmetric and depend on the image point 
position. A few more comments about the primary Seidel wavefront OPD 
function follow: 
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Figure 8.3 Example wavefront OPD surface and contour plots using seidel_5. These 
represent phase surfaces that are applied in the exit pupil. 
 

(a)  The axial image point ( 0ˆ,0ˆ 00  vu ) is only affected by spherical 
aberration or defocus. 

(b)  Systems usually have more than one aberration term because of the way 
aberrations arise from spherical surfaces. 

(c)  The primary aberrations describe most of the wavefront OPD for a 
conventional lens system, but higher-order terms in the Seidel 
polynomials can be significant in some cases. 

8.3 Pupil and Transfer Functions 

8.3.1 Pupil function  

Applying the complex phasor approach, the aberrated pupil function is defined as 
 

 
2 2

0 0 0 0ˆ ˆ ˆ ˆ( , ; , ) circ exp , ; ,
XP XP XP

x y x y
P u v x y jkW u v

w w w

    
         

, (8.3) 

 

u0=1, v0=0 
w040=1, w131=1 
w222=1

u0=1, v0=0 
w040 = 1

u0=0, v0=1 
w040=1, w131=1 
w222=1 

u0=1, v0=0 
w220 = 1
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where the circle function describes the diffraction-limited XP discussed in 
Chapter 7. For the Seidel polynomial W, an image plane coordinate is required, 
and the pupil coordinates are normalized by the XP radius wXP. 

Referring to Fig. 8.1, W is commonly assigned a positive value when Wab lies 
to the image side of the ideal spherical wavefront Wsp.

1 This is opposite to the 
phasor phase-front convention where the leading phase is more negative, so a 
minus sign is included in the exponent of Eq. (8.3). 

8.3.2 Imaging transfer functions  

The coherent and optical transfer function definitions of Eqs. (7.8) and (7.22) 
still apply for an aberrated imaging system. These are repeated here with the 
normalized image coordinates included. The coherent transfer function is 
 
  0 0 0 0ˆ ˆ ˆ ˆ( , ; , ) ( , ; , )U V XP U XP VH u v f f P u v z f z f    , (8.4) 
 
and the optical transfer function (OTF) is 
 

  VUVU ffvuHffvu ,;ˆ,ˆ),;ˆ,ˆ( 0000 H   0 0 normˆ ˆ, ; ,U VH u v f f . (8.5) 

 
 As discussed in Section 7.4.1, the normalization makes the OTF have a value 
of unity at DC. Our focus here is incoherent imaging. Even though the aberrated 
OTF can be significantly different than the diffraction-limited OTF, it can be 
shown that the incoherent cutoff frequency remains the same (2f0).

5 For a 
computer simulation of an aberrated system, the fundamental sampling restriction 
remains 
 
 2 o Nf f , (8.6) 
 

where  02 2 / ( ) 1 / #XP XPf w z f       and 1 / (2 )Nf u  . The sample interval 

in the image plane is u. 

8.4 Image Quality 

When studying imaging system performance, full-image simulations are not 
often done. Instead, image quality metrics are used to predict image performance. 
Although a full-image simulation is demonstrated in Section 8.7, our first task is 
to discuss and demonstrate the PSF and the MTF, two common image quality 
metrics. 

8.4.1 Point spread function  

The PSF (incoherent impulse response |h|2) indicates the characteristics of the 
image of a point source. Roughly speaking, the wider the PSF, the poorer the 
imaging resolution. A direct approach to obtain the PSF in the computer is 
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     2

00
12

00 ),;ˆ,ˆ(,;ˆ,ˆ VU ffvuHvuvuh  . (8.7) 

 
It is explicit in Eq. (8.7) that the PSF is dependent on the image position 
coordinate ( 00 ˆ,ˆ vu ). This means the aberrated imaging system is space variant, 
where a different impulse response (PSF) is required for every position in the 
image. 

8.4.2 Modulation transfer function  

For diffraction-limited systems, the OTF H is a real function, but if the pupil 
function is complex, the OTF can be complex. The OTF describes both the 
attenuation and phase that are impressed upon the spatial frequencies of an ideal 
incoherent image as formed by the imaging system. The effect of a phase change 
for a given spatial frequency can be thought of as translation of the 
corresponding sinusoidal spatial component in the image plane. 

The modulus of the OTF |H | is known as the modulation transfer function. 
The MTF simply describes attenuation of the sinusoidal image irradiance 
components as a function of spatial frequency. The terms “contrast” and 
“modulation depth” are also applied to MTF values. The modulation value for a 
single-frequency sinusoidal irradiance pattern can be calculated from 
measurements using 
 

 Modulation MAX MIN

MAX MIN

I I

I I





, (8.8) 

 
where IMAX is the irradiance measured at a peak of the pattern, and IMIN is the 
irradiance measured at a valley. A modulation value of 1 indicates no 
degradation of the sinusoidal spatial frequency component. A value of zero 
means the spatial frequency cannot be produced by the imaging system. 

The MTF tells much of the story about the spatial response of an imaging 
system and is easier to measure on real systems than the OTF. Once the PSF is in 
hand, the MTF can be found by 
 

     2

0 0 0 0ˆ ˆ ˆ ˆMTF , ; , , ; ,U Vu v f f h u v u v  . (8.9) 

8.5 Lens Example—PSF and MTF 

Figure 8.4 shows a ray trace layout diagram for an actual plano-convex lens 
generated by the commercial optical design software ZEMAX. ZEMAX is used 
here to obtain some practical aberration values for the lens simulation. The 
effective focal length of the lens is 100 mm and the pupil has a diameter of 20 
mm, which gives an image space f-number of 5. It is assumed that the lens will 
image a distant object; therefore, zXP  f. The actual prescription data for the 
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Figure 8.4 ZEMAX ray trace layout for f /5 plano-convex lens. Focal length (effective) = 
100 mm, pupil diameter = 20 mm. Image positions are shown for 0 and 10 mm.  

 
lens is a front surface radius of curvature = 51.68 mm, a back surface radius of 
curvature = infinite, glass = BK7, and center thickness = 4.585 mm. 

The maximum image height is arbitrarily chosen to be 10 mm. In Fig. 8.4, 
this is the point on the upper part of the image plane (y axis) to which the off-axis 
ray bundle is converging. The normalized image coordinate for this point 
is 1,0 00  vu . The field angle (the angle the central ray in the bundle makes 
with the optical axis) corresponding to this point is 5.72 deg. The maximum 
image height is associated with the maximum field of view for the system.  

The primary Seidel aberration coefficients as calculated by ZEMAX for this 
lens arrangement are listed in Table 8.2. The wavelength assumed is 0.55 m. 
The coefficient values are listed in waves, so  is a multiplier to get the path 
length value. The amount of aberration is considerable; five waves of spherical 
causes significant spreading of the PSF and nine waves of astigmatism and seven 
waves of curvature create considerably more image degradation for off-axis 
image points. 
 The script “lens_psfmtf” computes and displays the PSF and MTF for the 
f/5 lens: 
 

1 % lens_psfmtf 
2 % f/5 plano-convex lens (Newport lens KPX094) 
3 % 10 mm image height 

 
 

Table 8.2 Seidel coefficient values 
for f /5 lens (from ZEMAX). 

 

Coefficient Valuea 

Wd 0 
W040 4.963 
W131 2.637 
W222 9.025 
W220

b 7.536 
W311 0.157 
a  = 0.55 m. 
b Sagittal field curvature. 
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4 % psf and mtf with Seidel aberrations 
5 % aberration coefficients from ZEMAX 
6 M=1024;             %sample # 
7 L=1e-3;             %image plane side length 
8 du=L/M;             %sample interval 
9 u=-L/2:du:L/2-du; v=u; %coordinates 
10  
11 lambda=0.55e-6;     %wavelength 
12 k=2*pi/lambda;      %wavenumber 
13 Dxp=20e-3; wxp=Dxp/2; %exit pupil size 
14 zxp=100e-3;         %exit pupil distance 
15 fnum=zxp/(2*wxp);   %exit pupil f-number 
16 lz=lambda*zxp; 
17 twof0=1/(lambda*fnum);%incoh cutoff freq 
18  
19 u0=0; v0=0;         %normalized image coordinate 
20  
21 % aberration coefficients 
22 wd=0*lambda; 
23 w040=4.963*lambda; 
24 w131=2.637*lambda; 
25 w222=9.025*lambda; 
26 w220=7.536*lambda; 
27 w311=0.157*lambda; 
28  
29 fu=-1/(2*du):1/L:1/(2*du)-(1/L); %image freq coords 
30 [Fu,Fv]=meshgrid(fu,fu); 
31  
32 % wavefront 
33 W=seidel_5(u0,v0,-lz*Fu/wxp,-lz*Fv/wxp,... 
34     wd,w040,w131,w222,w220,w311); 
35  
36 % coherent transfer function 
37 H=circ(sqrt(Fu.^2+Fv.^2)*lz/wxp).*exp(-j*k*W); 
38 figure(1); 
39 imagesc(u,v,angle(H)); axis xy; axis square 
40 xlabel('u (m)'); ylabel('v (m)'); colormap('gray') 
41  
42 % point spread function 
43 h2=abs(ifftshift(ifft2(fftshift(H)))).^2; 
44  
45 figure(2)       % psf image and profiles 
46 imagesc(u,v,nthroot(h2,2)); axis xy; axis square 
47 xlabel('u (m)'); ylabel('v (m)'); colormap('gray') 
48 figure(3); 
49 plot(u,h2(M/2+1,:)); xlabel('u (m)'); ylabel('PSF'); 
50 figure(4); 
51 plot(u,h2(:,M/2+1)); xlabel('v (m)'); ylabel('PSF'); 
52  
53 % MTF 
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54 MTF=fft2(fftshift(h2)); 
55 MTF=abs(MTF/MTF(1,1));  %normalize DC to 1 
56 MTF=ifftshift(MTF); 
57  
58 % analytic MTF 
59 MTF_an=(2/pi)*(acos(fu/twof0)-(fu/twof0)... 
60     .*sqrt(1-(fu/twof0).^2)); 
61 MTF_an=MTF_an.*rect(fu/(2*twof0)); %zero after cutoff 
62  
63 figure(5)       % MTF profiles 
64 plot(fu,MTF(M/2+1,:),fu,MTF(:,M/2+1),':',... 
65     fu,MTF_an,'--'); 
66 axis([0 150000 0 1]); 
67 legend('u MTF','v MTF','diff limit'); 
68 xlabel('f (cyc/m)'); ylabel('Modulation'); 

 

Some comments on this script are as follows: 

(a) Line 19: Input line for the normalized image position of interest. 

(b) Line 21: Aberration coefficients taken from Table 8.1. 

(c) Line 39: It is a good idea to check the resulting coherent transfer 
function. If the diameter is half the size or less than the array, then 
the sampling criterion of Eq. (8.6) is satisfied.  

(d) Line 55: The MTF is normalized to 1 at the DC frequency value. 

(e) Line 58: The 1D analytic diffraction-limited MTF [from Eq. (7.31)] 
is generated for comparison with the aberrated results. 

The axial image point ( 0ˆ,0ˆ 00  vu ) is selected in line 19, and executing the 
script produces the results shown in Fig. 8.5. The phase of the coherent transfer 
function in Fig. 8.5(a) is displayed as a kind of contour map, where black 
indicates zero and white is 2 rad. The phase is actually sampled adequately, but 
some patterning is added to the image during display. The idea is to see if the 
diameter of the transfer function is half the size or less than the array, so the 
criterion of Eq. (8.6) is satisfied. The PSF in Figs. 8.5(b)–(d) appears to be 
relatively narrow—which is good—but, in fact, it is spread considerably relative 
to the diffraction-limited PSF (see Exercise 8.8). Only one half of the MTF curve 
is usually displayed since the negative frequency side is the same. Figure 8.5(e) 
shows the MTF drops quickly with increasing spatial frequency compared to the 
diffraction-limited curve. A practical cutoff frequency estimate from the MTF 
curve is perhaps 120 or 130 cyc/mm. For the axial image point, the PSF and the 
MTF are symmetric, so there is no difference between the u- and v-axis results. 
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Figure 8.5 Plano-convex lens results for the axial image point 0,0 00  vu : (a) coherent 
transfer function phase; (b) PSF image; (c) PSF u-axis profile; (d) PSF v-axis profile; and 
(e) MTF. Some of the patterning in (a) is display artifact. 

 
 

(b) 
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Change the maximum height image point on the v-axis ( 1ˆ,0ˆ 00  vu ) and 
the results are shown in Fig. 8.6. The PSF, no longer symmetric, has a 
characteristic elongation in the v direction [Fig. 8.6(b)–(d)]. The peak irradiance 
value is much smaller than the value in Fig. 8.5 due to considerable spreading of 
the PSF. The MTFs [Fig. 8.6(e)] are different along the two axes, with the v-axis 
MTF fairing the worst. Practical cutoff frequencies are approximately 20 
cycles/mm for u and perhaps 10 cycles/mm for v. 

Keep in mind that although the PSF results are centered in arrays 
corresponding to the 1 mm  1 mm area, in terms of the full image plane the 
axial PSF is positioned on the optical axis, whereas the maximum image height 
PSF is found to be 10 mm off the optical axis. 

For verification, or at least a sanity check, these results can be compared with 
analysis performed by ZEMAX for the same example. The ray spot diagrams 
(Fig. 8.7) are created by launching a set of rays in the pupil and tracing the rays 
in a rectilinear fashion to the image plane. The ray locations are marked in the 
image plane. The side length of the ZEMAX plots is the same as the 
lens_psfmtf results. The ray spot diagrams resemble the shapes of the PSFs 
generated by the lens_psfmtf script, which is a good sign. A more specific 
comparison can be made with the MTFs (Fig. 8.8). “T” refers to tangential plane, 
which is a plane aligned with our v axis. “S” refers to sagittal plane, which for 
our purposes includes the u axis. It is difficult to identify the T and S curves for 
the 10 mm image point, but the T (v axis) is the lower curve. The ZEMAX curves 
appear quite similar to the lens_psfmtf curves. Some differences are expected 
between the two sets of results because lens_psfmtf is working with only the 
five primary Seidel aberrations, whereas ZEMAX includes higher-order terms in 
the pupil wavefront description. 

8.6 Wavefront Sampling 

The criterion in Eq. (8.6) is associated with the incoherent cutoff frequency, but a 
simulation can also give erroneous results when the phase of the wavefront OPD 
in the pupil becomes undersampled. If the slope of the wavefront OPD is large, 
such that there is more than a  radian change in the phase quantity kW over the 
sample interval, then the pupil phase will be aliased. This criterion can be written 
as 
 

 
 ˆ ˆ,

ˆ π
ˆ

max

W x y
xk

x


 


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 ˆ ˆ,
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y
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
. (8.10) 
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Figure 8.6 Plano-convex lens results for the maximum field image point 1ˆ,0ˆ 00  vu  : 
(a) coherent transfer function phase; (b) PSF image; (c) PSF u-axis profile; (d) PSF v-axis 
profile; and (e) MTF. Some of the patterning in (a) is display artifact. 

(a) (b) 



Wavefront Aberrations 155 

 
 
 

Figure 8.7 ZEMAX ray trace spot diagrams for the f /5 plano-convex lens example. (a) 
axial image PSF and (b) maximum image height (v axis) PSF. 
 
 
 

 
 

Figure 8.8 ZEMAX MTF curves for the f /5 plano-convex lens example. The dark curve 
corresponds to the on-axis image point and the light curves are the tangential (T) and 
sagittal (S) planes for the 1ˆ,0ˆ 00  vu . 
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In general, )ˆ,ˆ( yxW  is not symmetric, so both axes may need consideration. For 
one axis, the normalized pupil sample interval is related to the XP and image 
plane parameters by 
 

 
 2 / #/

ˆ .XP

XP

fz L
x

w L


    (8.11) 

 
Recall that L is the image plane side length. Substituting Eq. (8.11) into Eq. 
(8.10) and rearranging yields 
 

 
 

 
ˆ ˆ,

ˆ 4 / #
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x f





. (8.12) 

 
For illustration, consider the primary Seidel aberration polynomial. The x axis 
will usually produce the largest wavefront slopes, so 
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 (8.13) 

 
The maximum value of Eq. (8.13) depends on the signs and values of the 
coefficients and coordinates, but a few special cases can be examined. 

For an axial image point, , 0ˆ0 u and assuming no defocus, the maximum 

occurs when  2 2ˆ ˆ ˆ 1x y x  , which yields 

 

 040

ˆ ˆ( , )
4

ˆ max

W x y
W

x





. (8.14) 

 
For example, consider the axial image point of the plano-convex lens example of 
Section 8.5. Combining Eqs. (8.12) and (8.14) gives 

 

 
 040 16 / #

L
W

f
 . (8.15) 

 
With L = 1  10−3 m and f/# = 5, the criteria is W040  12.5  10−6 m, or in terms 
of waves, W040  22.73. The plano-convex lens spherical aberration (Table 8.2) 
is well within this bound. 
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Another example is when all the aberration coefficients are positive, such as 
the case for the example lens (Table 8.1), then 
 

   2 2 3
040 131 0 222 0 220 0 311 0

ˆ ˆ( , )
ˆ ˆ ˆ ˆ2 4 3 2 2

ˆ d
max

W x y
W W W u W u W u W u

x


     


, (8.16) 

 
where the maximum requires 1ˆ x  (so 0ˆ y ) (see Exercise 8.5). 

8.7 Superposition Imaging Example  

In the lens_psfmtf example, a 1024  1024 sample array is used to examine a 
1  1 mm area of the image plane. To model the full image plane (radius of 10 
mm) with the same sampling would require roughly 20,000  20,000 samples—
which is not practical. Furthermore, since the aberrated imaging system is space 
variant, a simple convolution approach cannot be used. The resulting 
superposition operation leads to long computer run times. This is all to say that it 
can be impractical to directly model the full-image field of practical imaging 
systems. However, it is still a good exercise to see how the impulse functions can 
be distributed in an image frame and to learn to set up a superposition problem. 
To do this we need to conjure up a problem that can be handled with fewer 
samples. 

8.7.1 Image plane PSF map  

Assume an f/20 XP and  = 0.5 m. This results in 2f0 = 105 m−1. Working with 
M = 250 and an image plane side length of L = 1 mm leads to fN = 1.25  105 m−1. 
The criterion of Eq. (8.6) is thus satisfied. For an f/20 system, the PSF would, 
typically, change very little as a function of position within the 1  1 mm image 
frame. But, to illustrate how the PSF might change, the amount of aberration is 
exaggerated. 

The following script, psf_map generates a map of PSFs for different 
positions in the image plane. The map helps illustrate the overall effect of the 
system response. The example assumes ½ wave of spherical aberration, 1 wave 
of coma, and 1.5 waves of astigmatism. The concept is to loop through various 
image plane coordinates, creating PSFs for each, and the shifting the PSFs to the 
appropriate position in an image plane array. Remember that the PSFs are all 
produced initially in the center of the array.  
 

1 % psf_map generate psf map 
2  
3 M=250; 
4 L=1e-3;                %image plane side length 
5 du=L/M;                %sample interval 
6 u=-L/2:du:L/2-du; v=u; %coordinates 
7  
8 lambda=0.5*10^-6;      %wavelength 
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9 k=2*pi/lambda;         %wavenumber 
10 wxp=2.5e-3;            %exit pupil radius 
11 zxp=100e-3;            %exit pupil distance 
12 fnum=zxp/(2*wxp)       %exit pupil f-number 
13  
14 twof0=1/(lambda*fnum)  %inc cutoff freq 
15 fN=1/(2*du)            %Nyquist frequency 
16  
17 % aberration coefficients 
18 wd=0*lambda; 
19 w040=0.5*lambda; 
20 w131=1*lambda; 
21 w222=1.5*lambda; 
22 w220=0*lambda; 
23 w311=0*lambda; 
24  
25 fu=-1/(2*du):1/L:1/(2*du)-(1/L); %image freq coords 
26 fu=fftshift(fu); %shift cords, avoid shift H in loop 
27 [Fu,Fv]=meshgrid(fu,fu); 
28  
29 I=zeros(M); 
30 % loop through image plane positions 
31 for u0=[-.7:.7/3:.7] 
32     for v0=[-.7:.7/3:.7] 
33         % wavefront 
34         W=seidel_5(u0,v0,-2*lambda*fnum*Fu... 
35             ,-2*lambda*fnum*Fv,... 
36             wd,w040,w131,w222,w220,w311); 
37         % coherent transfer function 
38         H=circ(sqrt(Fu.^2+Fv.^2)*2*lambda*fnum)... 
39             .*exp(-j*k*W); 
40         % PSF 
41         h2=abs(ifftshift(ifft2(H))).^2; 
42         % shift PSF to image plane position 
43         h2=circshift(h2,[round(v0*M/2)... 
44             ,round(u0*M/2)]); 
45         % add into combined frame 
46         I=I+h2; 
47     end 
48 end 
49  
50 figure(1) 
51 imagesc(u,v,nthroot(I,2)); 
52 xlabel('u (m)'); ylabel('v (m)'); 
53 colormap('gray'); axis square; axis xy 

 
Some comments on psf_map: 
 

(a) Line 14: Semicolons are left off of the incoherent cutoff (2f0) and 
Nyquist frequency (fN) to help check the sampling when changing 
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parameters. 

(b) Line 26: An execution time-saving feature. The frequency coordinate 
array fu is shifted, so H can be computed in the loop in the shifted 
position—thus avoiding the fftshift of H before the ifft2 in line 
41. 

(c) Line 29: Output irradiance array I is dimensioned. 

(d) Lines 31 and 32: Seven u0 and v0 positions selected. 

(e) Line 43: After the PSF is computed for a particular u0, v0 
coordinate, the PSF is shifted to the u0, v0 coordinate in the image 
plane. The function circshift is a quick way to accomplish the 
shift. circshift shifts array elements along the rows and 
columns. Elements that shift off one side reappear on the other side 
of the array—similar to the periodic extension concept. This is an 
indexing operation, and since MATLAB organizes arrays in 
row/column order, the first variable in circshift corresponds to 
the y axis (v0). Round forces the row/column input values to be 
integers. The image plane width is assumed to be just wide enough to 
accommodate the u0=1 or v0=1 image points. 

(f) Line 46: The PSFs are simply added together in the array I. Don’t 
mistake this for a convolution or superposition operation. It is just an 
arrangement to quickly view and compare the PSFs. 

 
The PSF image plane map result from psf_pt_array is shown in Fig. 8.9. The 
center PSF is symmetric, but toward the image plane edges the PSFs become 
elongated due to coma and astigmatism. 
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Figure 8.9 PSF image plane map for psf_map example. 
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8.7.2 Image simulation 

Space-variant incoherent imaging cannot be described by the convolution in Eq. 
(7.23). Instead, the superposition integral is needed, 
 

       dudvvuvuhvuIvuI gi  




 2

0000 ,;ˆ,ˆ,ˆ,ˆ , (8.17) 

 
where the image is defined in normalized coordinates 00 ˆ,ˆ vu . The PSF 

  2

00 ,;ˆ,ˆ vuvuh  is defined in Eq. (8.7). The approach for image simulation is as 

follows: 
 

(1) Select a point 00 ˆ,ˆ vu  in the image plane. 

(2) Generate the PSF corresponding to 00 ˆ,ˆ vu . 
(3) “Flip” the PSF (just like a convolution operation) and shift the result to 

the appropriate position ( 00 ˆ,ˆ vu ) in the image plane. Multiply with the 
ideal geometric image (point-wise). 

(4) Sum all the irradiance values for the PSF-ideal image product. Place the 
result in the Ii array at coordinate ( 00 ˆ,ˆ vu ). 

(5) Return to step 1 and perform computations for the next image  
coordinate. 

 
The following script, image_super, is a superposition imaging simulation that 
applies the aberration parameters for the psf_map example to the test chart ideal 
image: 
 

1 % image_super superposition image 
2  
3 A=imread('USAF1951B250','png'); 
4 [M,N]=size(A); A=flipud(A); 
5 Ig=single(A); Ig=Ig/max(max(Ig)); 
6  
7 L=1e-3;                %image plane side length 
8 du=L/M;                %sample interval 
9 u=-L/2:du:L/2-du; v=u; %coordinates 
10 fN=1/(2*du)            %Nyquist frequency 
11  
12 lambda=0.5*10^-6;      %wavelength 
13 k=2*pi/lambda;         %wavenumber 
14 wxp=2.5e-3;            %exit pupil radius 
15 zxp=100e-3;            %exit pupil distance 
16 fnum=zxp/(2*wxp)       %exit pupil f-number 
17  
18 twof0=1/(lambda*fnum)  %inc cutoff freq 
19 fN=1/(2*du)            %Nyquist frequency 
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20  
21 % aberration coefficients 
22 wd=0*lambda; 
23 w040=0.5*lambda; 
24 w131=1*lambda; 
25 w222=1.5*lambda; 
26 w220=0*lambda; 
27 w311=0*lambda; 
28  
29 % reverse image plane frequency coordinates 
30 % which flips psf for superposition integration 
31 fu=1/(2*du):-1/L:-1/(2*du)+(1/L); 
32 fu=fftshift(fu); %shift cords, avoid shift H in loop 
33 [Fu,Fv]=meshgrid(fu,fu); 
34  
35 I=zeros(M); 
36 % loop through image plane positions 
37 for n=1:M 
38     v0=(n-(M/2+1))/(M/2) %norm v image coord 
39     for m=1:M 
40         u0=(m-(M/2+1))/(M/2); %norm u image coord 
41         % wavefront 
42         W=seidel_5(u0,v0,-2*lambda*fnum*Fu,... 
43             -2*lambda*fnum*Fv,... 
44             wd,w040,w131,w222,w220,w311); 
45         % coherent transfer function 
46         H=circ(sqrt(Fu.^2+Fv.^2)*2*lambda*fnum)... 
47             .*exp(-j*k*W); 
48         % PSF 
49         h2=abs(ifftshift(ifft2(H))).^2; 
50         % shift h2 to image plane position 
51         h2=circshift(h2,[n-(M/2+1),m-(M/2+1)]); 
52         % superposition integration  
53         I(n,m)=sum(sum(Ig.*h2)); 
54     end 
55 end 
56  
57 figure(1) 
58 imagesc(u,v,nthroot(I,3)); 
59 colormap('gray'); axis square; axis xy 
60 xlabel('x (m)'); ylabel('y (m)'); 

 
Some comments on image_super: 
 

(a) Line 31: To avoid the time required to “flip” the PSF within the for 
loops, the frequency coordinate vector fu is reversed. 

(b) Line 32: fu is shifted to avoid using fftshift on H in line 49 (a time 
saver). 
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(c) Line 36: for loops are used to step through each position in the 
image plane corresponding to all coordinate pairs 00 ˆ,ˆ vu . 

(d) Lines 37 and 38: The first loop involves the row index n. Because of 
MATLAB’s row/column ordering, this index corresponds to the y-
axis variable v0. This is one of the few times in this book where it is 
necessary to use the index values to derive physical parameter 
values. Looping with the index is forced by line 53, where each 
irradiance matrix element is addressed. 

(e) Lines 39 and 40: The second loop involves the row index m 
corresponding to the x-axis variable u0.  

(f) Line 51: circshift is applied using the index variables, which has 
the same effect as the approach used with circshift in psf_map. 

(g) Line 53: Finally, the superposition integral [Eq. (8.17)] is performed. 

(h) A final comment: This code takes a relatively long time to execute! 
(About an hour on my laptop.) Individual PSFs (250  250 = 62,500) 
are created and incorporated in the superposition frame. Compare 
this with a convolution result that involves a single PSF and can be 
accomplished in fractions of a second with a few fast Fourier 
tranforms. The luxury of a convolution is not available in this case. 

The result for image_super is shown in Fig. 8.10. The off-axis aberration 
effects are obvious in the edges of the image. The overall image appearance is 
consistent with the corresponding PSF map displayed in Fig. 8.9. This illustrates 
the usefulness of the PSF for predicting image results. 
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Figure 8.10 Test chart image for image_super example. 
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Try this example. You can always get a bite to eat, watch a movie, do some 
more homework…while you are waiting for the result. 

8.7.3 Practical image simulation 

What can be done to address the issues in the simulation approach of Section 
8.7.2 (namely, that the code takes a long time to execute and the simulation 
image plane area is small)? Well, get a faster computer with more memory. 
However, there are other more clever ways to address these issues. The execution 
time can be reduced significantly with some code changes. For example, the 
PSFs in each quadrant of the image are all the same—just rotated—so, reusing 
rather than recalculating the PSFs saves time. 

The bigger problem is the small image plane area due to the limited array 
size. An option is to undersample the image significantly—spread out the 
samples—and generate approximate PSFs that are also undersampled. Depending 
on the ideal image, this may give a useful approximation of the full-image result. 

An approach to address both the area and time problem is to divide the image 
plane into sections (tiles). A representative PSF for each tile is assumed and 
convolution processing is applied to each tile. The resulting tiles are reassembled 
to create the full image. The result is approximate since the PSF does not vary 
continually over the image plane. Also, artifacts are likely to be present in the 
reassembled image having to do with “stitching” the tiles together. Nevertheless, 
this can be an effective approach when short execution time and a modest image 
field are important. 

8.8 Exercises 

8.1 For the f/5 plano-convex lens example in Section 8.5: 

(a) What is the incoherent cutoff frequency? What is the Nyquist 
frequency? Is Eq. (8.6) satisfied? 

(b) Generate a surface plot of the wavefront OPD for the on-axis point 
)0,0(),( 00 vu  and the maximum fractional image point 

)1,0(),( 00 vu . 
 

8.2 Spherical aberration arises from the use of spherical optical surfaces to focus 
light. Unfortunately, a spherical surface does not produce a spherical 
converging wave for most incident wavefronts. Focus, or more precisely, 
defocus, can be applied to counter the effect of spherical aberration. 

(a) Assume an axial image point )0,0(),( 00 vu , W040 = 1 (chosen 
arbitrarily) and zero for the other Seidel aberration coefficients. 
Create a surface plot of W. 

(b) Include some defocus Wd in (a). Examine the surface plot of W. 
Adjust Wd to “compensate” for W040. Remember, ideally W should be 
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flat. Make a rough judgment on the amount of Wd needed for the best 
compensation. 

 
8.3 PSF through focus: A useful optical design technique is to examine the PSF 

of a system as a function of focus. The center of curvature of the defocus 
wavefront reference sphere is positioned a distance d = 8(f/#)2Wd from the 
original image point.2 For example, with an f/10 system, where Wd = −1.0 
and  = 0.5 m, then d = −0.4 mm. Thus, if the image plane is moved −0.4 
mm toward the lens system, the effect is as if an aberration of Wd = −1.0 is 
created in the pupil. 

 For the f/5 lens example in Section 8.5, examine the PSFs for the axial image 
point as a function of focus where d = 1, 0.5, 0, +0.5, and +1 mm. Which 
value of d appears to create the “narrowest” PSF (or the PSF with the 
highest peak value)? What is the corresponding value of Wd? 

 
8.4 Parabolic Mirror: A mirror with a parabolic curvature has a diffraction-

limited PSF for an incident plane wave at zero field angle (traveling down 
the optical axis). Figure 8.10 shows a ray trace diagram from ZEMAX of an 
f/5 parabolic mirror arrangement. In practice, the converging light is usually 
directed out of the incoming beam with a second mirror, for example, a small 
flat mirror at a 45-deg angle, but that issue is ignored here. The mirror 
parameters are f = 200 mm, diameter = 40 mm, and the maximum image 
height is 3.5 mm. The Seidel aberration coefficients are shown in Table 8.3 
for the He–Ne laser wavelength 0.633 m (a common wavelength for 
component testing). 

Alter the lens_psfmtf script to model this mirror. Use M = 1024 and L = 
0.1  10−3 m. Generate the PSF and MTF for the following image position 
coordinates )ˆ,ˆ( 00 vu : (0, 0), (0, 1), and (0.707, 0.707). 

 

 
Figure 8.10 ZEMAX ray trace layout for f /5 parabolic mirror. Focal length (effective) = 
200 mm, pupil diameter = 40 mm. Incident field angles are 0 and 1 deg, corresponding to 
image plane heights of 0 and 3.5 mm. 
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Table 8.3 Seidel coefficient values for f /5 parabolic mirror (ZEMAX). 

 

Coefficient Valuea 

Wd 0 
W040 0 
W131 −1.3792 
W222 0.4815 
W220

b 0 
W311 0 
a  = 0.633 m.  
b Sagittal field curvature. 

 
8.5 For the maximum field image point ( 1ˆ0 u ) in the f/5 lens example of 

Section 8.5, find the amount of positive defocus Wd that can be added to the 
pupil such that Eq. (8.12) is an equality (critically satisfied). Apply defocus 
in the lens_psfmtf script and examine the PSF for defocus values over and 
under the critical value. What happens to the PSF when the wavefront OPD 
is undersampled?  

 
8.6 Zernike Polynomials: Zernike polynomials are another common method of 

describing the wavefront OPD of a pupil.1 They are a set of terms for a 
circular pupil that are orthogonal (changing one term does not affect the 
other). Unlike the Seidel series, Zernike polynomials do not assume circular 
symmetry. There is no requirement to rotate the coordinates of the Zernike 
system for different image points. When measuring an unknown wavefront 
with an instrument such as an interferometer, the usual approach for 
characterizing the wavefront is to “fit” the measurements with Zernike terms. 
This means finding term coefficients that result in the closest match to the 
wavefront. Zernike polynomials are also used to characterize optical 
wavefront distortions due to other phenomena such as atmospheric 
turbulence.6,7 

 
Table 8.4 Zernike polynomials for f/5 plano-convex lens at 1ˆ,0ˆ 00  vu . 

 Number  Polynomial Coefficients 

 1  7.70185740  1 

 2  0.00000000   4^(1/2)(p) * COS (A) 

 3  1.04836665  4^(1/2)(p) * SIN (A) 

 4  4.95277338   3^(1/2)(2p^2 - 1) 

 5  0.00000000  6^(1/2)(p^2) * SIN (2A) 

 6 -1.83668298  6^(1/2)(p^2) * COS (2A) 
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 Table 8.4 is a ZEMAX output listing of the Zernike coefficients (“standard 
coefficients”) for the f/5 plano-convex lens example. The listing corresponds to 
the image point 1ˆ,0ˆ 00  vu . The specific polynomial forms are also listed as 

there are several versions of Zernike polynomials in the literature. p is the 
normalized radial distance in the pupil and A is the polar angle referenced to the x 

 7  0.38477648  8^(1/2)(3p^3 - 2p) * SIN (A) 

 8  0.00000000  8^(1/2)(3p^3 - 2p) * COS (A) 

 9 -0.00829929  8^(1/2)(p^3) * SIN (3A) 

10  0.00000000  8^(1/2)(p^3) * COS (3A) 

11  0.39476169  5^(1/2)(6p^4 - 6p^2 + 1) 

12 -0.00582307 10^(1/2)(4p^4 - 3p^2) * COS (2A) 

13  0.00000000   10^(1/2)(4p^4 - 3p^2) * SIN (2A) 

14  0.00007007 10^(1/2)(p^4) * COS (4A) 

15  0.00000000 10^(1/2)(p^4) * SIN (4A) 

16  0.00000000 12^(1/2)(10p^5 - 12p^3 + 3p) * COS (A) 

17  0.00782021 12^(1/2)(10p^5 - 12p^3 + 3p) * SIN (A) 

18  0.00000000 12^(1/2)(5p^5 - 4p^3) * COS (3A) 

19 -0.00010086 12^(1/2)(5p^5 - 4p^3) * SIN (3A) 

20  0.00000000 12^(1/2)(p^5) * COS (5A) 

21  0.00000048 12^(1/2)(p^5) * SIN (5A) 

22  0.00233053  7^(1/2)(20p^6 - 30p^4 + 12p^2 - 1) 

23  0.00000000 14^(1/2)(15p^6 - 20p^4 + 6p^2) * SIN (2A) 

24 -0.00010805 14^(1/2)(15p^6 - 20p^4 + 6p^2) * COS (2A) 

25  0.00000000 14^(1/2)(6p^6 - 5p^4) * SIN (4A) 

26  0.00000126 14^(1/2)(6p^6 - 5p^4) * COS (4A) 

27  0.00000000 14^(1/2)(p^6) * SIN (6A) 

28  0.00000006 14^(1/2)(p^6) * COS (6A) 

29  0.00008738 16^(1/2)(35p^7 - 60p^5 + 30p^3 - 4p) * SIN (A) 

30  0.00000000 16^(1/2)(35p^7 - 60p^5 + 30p^3 - 4p) * COS (A) 

31 -0.00000163 16^(1/2)(21p^7 - 30p^5 + 10p^3) * SIN (3A) 

32  0.00000000 16^(1/2)(21p^7 - 30p^5 + 10p^3) * COS (3A) 

33  0.00000000 16^(1/2)(7p^7 - 6p^5) * SIN (5A) 

34  0.00000000 16^(1/2)(7p^7 - 6p^5) * COS (5A) 

35  0.00000002 16^(1/2)(p^7) * SIN (7A) 

36  0.00000000 16^(1/2)(p^7) * COS (7A) 

37  0.00001672    9^(1/2)(70p^8 - 140p^6 + 90p^4 - 20p^2 + 1) 
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axis. Term 1 is a “piston” term that has no effect on the PSF or MTF calculation. 
Note that the coefficients after 11 are small in this case. 

(a) Write a function like seidel_5 but to evaluate the Zernike 
polynomials. Include terms through at least No. 11. The pupil 
coordinates are as follows: 

p=sqrt(X.^2+Y.^2)   
A=atan2(Y,X) 

In the Zernike case, the image point position is not an explicit part of 
the polynomial description. There are various efficient ways to code 
up Zernike polynomials, for example, see Schmidt,6 but there is 
always the straightforward way of listing them out as was done for 
seidel_5. 

(b) Alter lens_psfmtf to use the Zernike function. Input coefficient 
values from Table 8.4. The values are in “waves,” so multiply by . 
Generate PSF and MTF results. How do they compare with the 
Seidel versions? 

 
8.7 Apply the psf_map code to investigate the effects on the PSFs for specific 

Seidel aberration terms. Keep the exit pupil parameters the same as in the 
example but look at the following:  

(a) 1 defocus; 

(b) 1 spherical aberration; 

(c) 2 coma; 

(d) 1 astigmatism; 

(e) 1 field curvature; and 

(f)  3 distortion. 

 
8.8 Strehl Ratio: The Strehl ratio is another common measure of optical system 

performance. It is the ratio of the central irradiance of the PSF for an 
aberrated system to the central irradiance of the unaberrated (diffraction-
limited) PSF. For an on-axis PSF this can be written as 
 

 
 
 

0,0

0,0
ab

unab

I
S

I
 . (8.18) 

 
(a) Start with the lens_psfmtf example code. Set all the aberration 

coefficients to zero and find the peak value of the PSF. One option is 
to use max(max(h2)). This value represents Iunab. 

(b) Find the peak PSF values for each of the following spherical 
aberration coefficient values: W040 = 0, 0.1, 0.25, 0.5, 0.75, and 
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1. Assume  = 0.55 m and the other aberration coefficients are 
zero. 

(c) Form the Strehl ratios S with the results from parts (a) and (b). Create 
a plot of S versus the W040 coefficient values. 

(d) A convenient analytical approximation for the Strehl ratio is2 
 

  22exp kS  , (8.19) 
 

     where k is the wavenumber and 2 is the wavefront variance. When       
     only spherical aberration is present, the wavefront variance is given   
     by 2  = (1/12 + 1/180)W040.

 2 Plot the analytical and  
     computational Strehl results on the same graph. Are the results  
     consistent? 

(e) Compute S for the f/5 example lens presented in the lens_psfmtf 
code for the on-axis image point. 
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Chapter 9 

Partial Coherence Simulation 
 
 
Except for a brief foray into incoherent imaging in Chapter 7, we have been 
considering coherent light. Coherence refers to the amount of correlation in the 
optical field at separate times or separate points within a beam of light. High 
coherence leads to stationary interference effects such as the “fringing” and 
“ringing” structures that appeared in the simulated diffraction and imaging results 
for monochromatic (coherent) light. These kinds of features are absent from the 
incoherent imaging results. 

Coherence is exploited in a variety of optical applications: holography, 
interferometry, optical coherence tomography, coherent lidar, Fourier transform 
spectroscopy, and quantum communications, to name a few. We won’t get into 
the details of these topics here, but some applications simply require high 
coherence (holography) while others also take advantage of the lack of coherence 
(optical coherence tomography). Sometimes coherence is a noise source—recall 
the speckled coherent images of Section 7.3.4. 

It is convenient to separate coherence into two categories: temporal and 
spatial. For illustration, Fig. 9.1 shows a beam of light with some sample points. 
Temporal coherence refers to the correlation (time average of the products of 
complex fields) at spatial point P but separated in time by . The degree of 
coherence for a partial temporal coherent source changes with ; typically, 
decreasing as  increases. Spatial coherence refers to the correlation of complex 
fields at the same time but at different transverse points P1 and P2. For a partial 
spatial coherent source, the degree of coherence typically decreases with 
separation distance. 

 
 
 
 
 

 
 
Figure 9.1 Correlation of complex fields at point P separated in time by  is a measure of 
temporal coherence. Correlation of fields at points P1 and P2 at the same time is a 
measure of spatial coherence. 

U(P, t) & U(P, t+) U(P1, t) 

U(P2, t) 
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Optical coherence theory is a rich statistical discipline, but in this chapter 
only a few summary results are provided that are specific to the computational 
discussion. The interested reader is encouraged to explore other resources on this 
topic.1–5 As the emphasis here is the propagation of partially coherent light, it is 
constructive to note that generalized analytic solutions exist for the propagation 
of nonmonochromatic light. For example, see Section 3.8 in Introduction to 
Fourier Optics by Goodman.6 Furthermore, there are a number of ways one 
might go about simulating the propagation of partially coherent radiation (see the 
introductory remarks by Rydberg and Bengtsson).7 

The computation approaches presented here are not derived from an analytic 
solution, but represent a practical strategy based on the concept that partially 
coherent light is a superposition of irradiance from uncorrelated coherent waves. 
The simulation of partial temporal coherence and partial spatial coherence is 
handled in separate ways. However, the approaches have the common theme that 
a series of propagations or imaging simulations are performed using the coherent 
methods, and then the irradiance patterns from coherent results are summed to 
give the partially coherent result. 

9.1 Partial Temporal Coherence 

9.1.1 Quasi-monochromatic light 

Monochromatic light is characterized by a single temporal frequency . 
Polychromatic light contains multiple frequencies or a spread in temporal 
bandwidth . The finite bandwidth corresponds to a loss of temporal coherence. 
Some sources, such as an incandescent lamp, emit a relatively large range of 
wavelengths. The focus in this section is on quasi-monochromatic light, where 
 << 0. In this case, the bandwidth  is much smaller than the mean, or 
center frequency 0. Lasers are generally quasi-monochromatic sources and their 
partial temporal coherence characteristics are such that the effects can be 
noticeable or even exploited in practical applications. 

Quasi-monochromatic light can be characterized by a power spectral density 
that describes the relative irradiance contributions of the optical frequencies. This 
density function is also referred to as the lineshape. Common power spectral 
density functions for quasi-monochromatic light include rectangular, Gaussian, 
and Lorentzian.1,2 Here, we consider a normalized Gaussian lineshape given by 
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, (9.1) 

 
where b is a width parameter and 0 is the center frequency (Hz). The integral of 
the normalized spectral density over all frequencies is equal to unity. When 
characterizing the spectral density with a single number it is common to refer to 
the linewidth , which is a full width at half-maximum (FWHM) measure (Hz) 
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of the spectral density function. Considering the half-maximum value for Eq. 
(9.1), the following can be derived:

  
2ln2


b . (9.2) 

 
A measure of the temporal coherence of the optical field is the complex 

degree of temporal coherence  (). It is the normalized correlation of the field 
where  is the time delay between correlation samples. The normalized spectral 
density and complex degree of temporal coherence are linked by a Fourier 
transform relationship:1 
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where )(ˆ S is defined for positive frequencies. Performing the transform on the 
spectral density in Eq. (9.1) gives 
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Our concern is with )( , where it can be shown that  

 
   10   . (9.5) 

 
Perfect coherence is indicated by | ()| = 1 and incoherence is indicated by 
| ()| = 0. Figure 9.2 illustrates that as  increases, |()| decreases, so further 
time separation means less coherence. 

A single-value characterization of temporal coherence is the coherence time 
c. For a Gaussian lineshape the coherence time is defined as1 

 

 






664.0

c . (9.6) 

 
For a fixed spatial position in the path of a beam of light, the field is highly 
correlated over a time that is much less than the coherence time. For a time that is 
on the order of the coherence time, the correlation is significantly reduced but 
may still cause some noticeable interference effects. The distance the beam 
travels during the coherence time is known as the coherence length 
 
 cc c . (9.7) 
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Figure 9.2 Magnitude of the complex degree of coherence corresponding to Eq. (9.4). 
The sign of  depends on which sample point is delayed.  

 
For example, suppose 0 = 650 nm and  = 2 GHz (a wavelength and linewidth 
that are typical of a laser diode). In this case, c = 3.32  10−10 s and 10 cm.c    

Imagine splitting this beam of light equally and “delaying” one part by making it 
travel an extra distance of 10 cm. If the two beams are recombined, the contrast 
in the resulting interference fringes will be low. 

9.1.2 Partial temporal coherence simulation approach 

For simulation purposes the total irradiance in an x–y plane can be modeled as8 
 

  




  dyxISyxI );,(ˆ),( , (9.8) 

 
where I(x,y;) is a spectral irradiance (W/m2·Hz). On the computer the spectral 
content can be modeled as a sum of discrete components: 
 

    
1

ˆ( , ) , ;
N

n n
n

I x y S I x y  


 , (9.9) 

 
where n indexes the components, N is the number of components, and  is the 
frequency interval between components. Figure 9.3 shows an example of a 
normalized, sampled, power spectral density function. In Eq. (9.8) a simple 
continuous power spectral density function is assumed. But with the appropriate 
model more complicated density functions can be handled, such as a series of 
distinct mode features that are found in some laser sources. 

/1 /2 /1 0 /2
 

 
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Figure 9.3 Normalized optical power spectral density with sampled components. 
 

Thus, the simulation approach is to propagate (or image with) a series of 
fields at different frequencies, form the irradiance for each, weigh each by the 
power spectral density, and sum the patterns to get the partially coherent result.  

This approach ignores frequency component cross-correlations, in other 
words, interference between frequency components. Cross-correlation could 
result in temporal beating effects in the irradiance rather than a stationary pattern. 
The beat frequencies would be equal to the differences of the component 
frequencies but may not be detectable by the sensor depending on the sensor’s 
temporal response. The correlations may also be weak. Although not fully 
justified, this is a common assumption in practice that seems to give credible 
results.7,9 See the related discussion in Section 9.3. 

To observe partial temporal coherence effects, some type of differential delay 
must occur between different segments of the field in traveling from the source to 
the observation plane. The delay can come about in a variety of natural ways; for 
example, multipath scattering by something in the propagation medium or 
reflection off of surfaces with a depth profile. A delay can also be arranged in an 
optical setup. 

9.1.3 Partial temporal coherence example 

Consider the arrangement in Fig. 9.4. Two parallel beams, both circular in shape 
with radius w, enter from the left with a center-to-center separation of s. They 
are assumed to have come from the same source with no temporal delay between 
them. Using mirrors, the lower leg takes a detour that adds a distance of d to its 
path relative to the top beam. This can be interpreted as a relative time delay of  
= d/c. The beams are focused by a lens of focal length f to form a Fraunhofer 
pattern. This is essentially Young’s double-slit arrangement, except with holes 
and a lens. Diffractive effects to the left of the lens are ignored, so circle 
functions are assumed for the beams at the lens.  

 

    /0  

Ŝ  
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Figure 9.4 Two-beam temporal coherence arrangement. 
 
Choose some parameters for the simulation; for example, 0 = 650 nm,  = 

2 GHz, w = 1 mm, s = 5 mm, f = 0.25 m, and d = 5 cm. Here is the code for 
pc_temp: 
 

1 % pc_temp partial temporal coherence example 
2  
3 lambda0=650e-9;     %center wavelength (m) 
4 c=3e8;              %speed of light 
5 k0=2*pi/lambda0;    %center wavenumber 
6 nu0=c/lambda0;      %center frequency 
7  
8 % Gaussian lineshape parameters 
9 N=51;               %number of components (odd) 
10 delnu=2e9;          %spectral density FWHM (Hz) 
11 b=delnu/(2*sqrt(log(2))); %FWHM scaling 
12 dnu=4*delnu/N;      %freq interval 
13  
14 % source plane parameters 
15 L1=50e-3;           %source plane side length 
16 M=250;              %# samples (even) 
17 dx1=L1/M;           %sample interval 
18 x1=-L1/2:dx1:L1/2-dx1; %source coords 
19 x1=fftshift(x1);     %shift x coord 
20 [X1,Y1]=meshgrid(x1,x1); 
21  
22 % beam parameters 
23 w=1e-3;             %radius 
24 dels=5e-3;          %transverse separation 
25 deld=5e-2;          %delay distance 
26 f=0.25;             %focal dist for Fraunhofer 
27 lf=lambda0*f; 
28  
29 % loop through lines 
30 I2=zeros(M); 
31 for n=1:N 
32    % spectral density function 
33    nu=(n-(N+1)/2)*dnu+nu0; 
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34    S=1/(sqrt(pi)*b)*exp(-(nu-nu0)^2/b^2); 
35    k=2*pi*nu/c; 
36    % source 
37    u=circ(sqrt((X1-dels/2).^2+Y1.^2)/w)... 
38        +circ(sqrt((X1+dels/2).^2+Y1.^2)/w)... 
39        *exp(j*k*deld); 
40    % Fraunhofer pattern 
41    u2=1/lf*(fft2(u))*dx1^2; 
42    % weighted irradiance and sum 
43    I2=I2+S*(abs(u2).^2)*dnu; 
44 end 
45  
46 I2=ifftshift(I2); %normalize/center irradiance 
47 x2=(-1/(2*dx1):1/L1:1/(2*dx1)-1/L1)*lf; %obs coords 
48 y2=x2; 
49  
50 figure(1)              %irradiance image 
51 imagesc(x2,y2,I2); 
52 xlabel('x (m)'); ylabel('y (m)');  
53 axis square; axis xy; colormap('gray'); 
54  
55 figure(2)              %irradiance profile 
56 plot(x2,I2(M/2+1,:)); 
57 xlabel('x (m)'); ylabel('Irradiance');  

 
Some comments about this code are as follows: 
 

(a) Line 8: The modeling accuracy for the spectral density function 
depends on the number of discrete spectral lines N and the frequency 
interval dnu (). After some experimentation N = 51 and dnu = 
4*delnu/N were selected. The 51 lines span 4, or four times the 
FWHM of the spectral density. This is the span displayed in Fig. 9.2. 
These values give results that are consistent with theory in this case. 
Of course, the more lines and greater span, the better the discrete 
spectral model follows the analytic model, but execution time can 
become a problem.  

(b) Line 15: The source plane side length L1 = 50 mm is selected to 
sample the circ beams adequately and give a reasonable pattern size 
in the observation plane. No need to worry about the Fraunhofer 
phase sampling and aliasing. 

(c) Line 19: fftshift is applied to x1 so the field u is directly 
calculated in the shifted position. This avoids the use of fftshift 
within the for loop (a time saver). 
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(d) Line 31: The for loop is used to compute and sum the N Fraunhofer 
irradiance patterns, each weighted by the discrete spectral density 
function S. 

(e) Line 39: The two holes are oriented along the x axis. The delay 
distance d is set by the variable deld. For u, the field at the input 
to the lens, the effect of the delay is modeled by the complex 
exponential term that includes the optical path difference, exp(jkd). 

(f) Line 41: The front-end Fraunhofer phase terms are ignored. The 
center wavelength lambda0 is used for scaling the Fraunhofer 
pattern in both the multiplicative 1/lf term and the Fraunhofer 
coordinates x2 (line 47). The slight spread in wavelength for the 
quasi-monochromatic light causes insignificant effects in these terms 
(unlike the optical path difference term). 

(g) Line 43: The integration approximation for Eq. (9.9) is performed. 
 
 Results for the code are shown in Fig. 9.5. With perfectly coherent beams the 
fringe “nulls” will reach zero, but clearly the interference is not complete. This is 
expected for a coherence length of 10 cmc    and path difference of d = 5 cm. 

For this particular case,  = d/c = 1.67  10−10 s and the modulus of the complex 
degree of temporal coherence is calculated to be 
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An analytic solution for the irradiance pattern in this case is given by1 
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and from Eq. (9.4)  
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(a) (b) 

 

Figure 9.5 Partial temporal coherence results for pb_temp, where  = 2 GHz ( c = 10 cm ) 
and d = 5 cm: (a) irradiance image and (b) x axis profile. The x-axis in (b) is expanded for a 
better view of the center of the pattern. Points in (b) are from the analytic result. 
 
The points displayed in Fig. 9.5(b) are generated using Eq. (9.10). They show a 
close fit to the simulation result. 
 The panels in Fig. 9.6, created with pc_temp, show the transition from high 
to low contrast fringes in a series of Fraunhofer images and profiles for d 
ranging from 0 to 50 cm. Essentially all coherent interference between the beams 
is lost for d = 50 cm and the Airy pattern shape for a single beam appears—
although the relative irradiance is doubled because of the two beams. The 
“lumpiness” in the Airy pattern rings, most notable in the d = 50 cm case, is due 
to the discrete edge sampling of the original circle functions. 

9.2 Partial Spatial Coherence 

9.2.1 Stochastic transmission screen  
The field from an ideal point source is perfectly spatially coherent. If the field 
from the source is observed at two points in space, the amplitudes will be 
perfectly correlated. But with a spatially extended collection of independently 
radiating point sources involving different frequencies and amplitudes, the 
correlation between the field at the two observation points decreases. Similarly, if 
the field is somehow affected randomly in time along the different propagation 
paths, then spatial coherence will decrease. Conversely, as light travels a long 
distance from a source, the wavefront becomes more planar and spatial coherence 
increases. For example, light from distant stars has high spatial coherence. 

A measurement of spatial coherence is the complex coherence factor 12. It is 
a normalized correlation of the field at two points, 1 and 2. We are concerned 
with |12|, where it can be shown that  
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 10 12   . (9.12) 

 
The correlation between the field samples is performed over time. Suppose the 
two points are separated in the x–y plane by the values x′ and y′, respectively (Fig. 
9.7). For simulation purposes we consider a simple model with a deterministic 
part of the field U0(x, y) and a stochastic temporal component introduced through 
a complex transmittance screen tA(x, y; t). Thus, the field is modeled by 
 
      tyxtyxUtyxU A ;,,;, 0 . (9.13) 
 
A quantity of interest is the time-averaged spatial autocorrelation function of the 
transmittance screen, given as  
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where the angle brackets indicate the average and * is the complex conjugate. 
 The complex coherence factor is equivalent to the normalized screen 
autocorrelation function1 
 

 
 
 0,0

,
12 R

yxR 
 . (9.15)  

 
A commonly used form for the spatial correlation function is a Gaussian 
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where cr  is a measure of the spatial or transverse coherence length.  

9.2.2 Partial spatial coherence simulation approach 

The simulation approach is outlined as follows: a spatially random transmittance 
screen is applied to a deterministic beam field, the result is propagated, and the 
irradiance is formed. The process is repeated many times with different 
realizations of the screen and the resulting irradiance patterns are averaged to 
produce the partial spatial coherent result. The procedure is illustrated in Fig. 9.8. 

A convenient form of a transmittance function is a complex phasor given by 
 
     yxjyxt A ,exp,  , (9.17) 
 
where (x,y) is a spatially correlated, random phase function that is often called a 
phase screen. The transmittance function of Eq. (9.17) preserves the 
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Figure 9.6 Partial temporal coherence irradiance images (left column) and corresponding 

x-axis profiles (right column) for  = 2 GHz ( c = 10 cm ) and d = 0–50 cm. Axis scaling 

is the same as for Fig. 9.5. 
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Figure 9.7 Illustration of field sample positions for spatial coherence correlation. 

 
magnitude of the deterministic part of the field. The phase is modeled by 
 
      yxfyxryx ,,,  , (9.18) 


where r(x,y) is a spatially uncorrelated, or “delta correlated” random signal with 
variance r

2, and f(x,y) is a Gaussian response function that acts to “smooth” the 
random signal and create spatial correlation in the phase signal. If the Gaussian 
function is given by 
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where f is the width parameter, then the autocorrelation of Eq. (9.17) can be 
shown to be10 
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Figure 9.8 Illustration of partial spatial coherence simulation approach. 
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Furthermore, if  
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a Gaussian correlation function is obtained 
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where the transverse coherence length is given by  
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To create tA(x,y) in the computer, (x,y) is first constructed based on Eq. 

(9.18). This can be done using a Fourier filtering method in the frequency 
domain. If ||2 is the power spectrum of , r

2 is the variance of the random 
signal r and F = {f}, then using the property of a linear filter with a random 
input signal we write11  
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The operation performed in the frequency domain needs to satisfy Eq. (9.24). In 
the computer with discrete arrays and indices p and q, we do the following:10,12 
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where ),(~ qpr  is a zero-mean, unit variance random array. The term (fXfY)1/2 
arises because a sample interval “area” associated with the variance of the 
samples needs to be normalized. For uniform sampling (fXfY)1/2 = fX. For the 
Gaussian correlation case, the transform of Eq. (9.19) gives the following filter: 
 

    2 2 2 2, exp πX Y f X YF f f f f     . (9.26) 

 
So, the computational approach to get a random realization of  is to fill an array 
with random values ),(~ qpr , multiply by Xr f/ , multiply by the filter 

response ),( YX fqfpF  , and take the inverse FFT. 
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One final trick is to make ),(~ qpr a random complex array, where the real 

and imaginary parts are independent Gaussian random values. Thus,  generated 
via Eq. (9.25) is complex. Taking the inverse FFT we get , where the real and 
imaginary parts are independent random arrays, each with the correlation 
specified by Eq. (9.22)—so, two random phase screens for the price of one FFT! 
Finally, the screens are inserted in complex phasors to make two discrete 
realizations of the transmittance function tA. 

9.2.3 Partial spatial coherence example 

To illustrate partial spatial coherence effects, the same optical arrangement as for 
the temporal case is used, but the path delay is removed (Fig. 9.9). In this case 
the limited spatial coherence does the job of reducing the fringe contrast in the 
Fraunhofer pattern. The same parameters as in the temporal case are used for the 
simulation:  = 650 nm, w = 1 mm, s = 5 mm, and f = 0.25 m. The transverse 
coherence length is selected as cr = 8 mm, which is on the order of s and, 
therefore, should produce an obvious reduction in coherence between the two 
beams. In this case, 
 

  22
12 /exp crs   = 0.677. 

 
The code for pc_spatial is as follows: 

 
1 % pc_spatial partial spatial coherence example 
2  
3 lambda=650e-9;      %center wavelength (m) 
4  
5 L1=50e-3;           %source plane side length 
6 M=250;              %# samples (even) 
7 dx1=L1/M;           %sample interval 
8 x1=-L1/2:dx1:L1/2-dx1; %source coords 
9 x1=fftshift(x1);    %shift x coord 
10 [X1,Y1]=meshgrid(x1,x1); 
11  
12 % beam parameters 

 
 

 
 

Figure 9.9 Two-beam spatial coherence arrangement. 
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13 w=1e-3;             %radius 
14 dels=5e-3;          %transverse separation 
15 f=0.25;             %Fraunhofer focal distance 
16 lf=lambda*f; 
17  
18 % partial spatial coherence screen parameters 
19 N=100;              %number of screens (even) 
20 Lcr=8e-3;           %spatial correlation length 
21 sigma_f=2.5*Lcr;    %Gaussian filter parameter     
22 sigma_r=sqrt(4*pi*sigma_f^4/Lcr^2); %random std 
23  
24 dfx1=1/L1; 
25 fx1=-1/(2*dx1):dfx1:1/(2*dx1)-dfx1; 
26 fx1=fftshift(fx1); 
27 [FX1,FY1]=meshgrid(fx1,fx1); 
28  
29 % source field 
30 u1=circ(sqrt((X1-dels/2).^2+Y1.^2)/w)... 
31     +circ(sqrt((X1+dels/2).^2+Y1.^2)/w); 
32 % filter spectrum 
33 F=exp(-pi^2*sigma_f^2*(FX1.^2+FY1.^2)); 
34  
35 % loop through screens 
36 I2=zeros(M); 
37 for n=1:N/2 
38    % make 2 random screens 
39    fie=(ifft2(F.*(randn(M)+j*randn(M)))... 
40        *sigma_r/dfx1)*M^2*dfx1^2; 
41    % Fraunhofer pattern applying screen 1 
42    u2=1/lf*(fft2(u1.*exp(j*real(fie))))*dx1^2;  
43    I2=I2+abs(u2).^2; 
44    % Fraunhofer pattern applying screen 2 
45    u2=1/lf*(fft2(u1.*exp(j*imag(fie))))*dx1^2;  
46    I2=I2+abs(u2).^2; 
47 end 
48  
49 I2=ifftshift(I2)/N;    %normalize & center irradiance 
50 x2=(-1/(2*dx1):1/L1:1/(2*dx1)-1/L1)*lf; %obs coords 
51 y2=x2; 
52  
53 figure(1)              %irradiance image 
54 imagesc(x2,y2,I2); 
55 xlabel('x (m)'); ylabel('y (m)');  
56 axis square; axis xy; 
57 colormap('gray'); 
58  
59 figure(2)              %irradiance slice 
60 plot(x2,I2(M/2+1,:)); 
61 xlabel('x (m)'); ylabel('Irradiance'); 
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Comments for this code are as follows: 
 

(a) Line 9: fftshift is applied to x1 so the field u is calculated in the 
shifted position, which avoids the use of fftshift within the for 
loop. 

(b) Line 19: The number of phase screen realizations is the same kind of 
parameter as the number of spectral lines in the partial temporal 
coherence simulation. The simulation result tends to converge to the 
analytic result as a function of N, but execution run times get long 
with large N. In this case N=100 was chosen experimentally. This 
value gave results that appeared to be “smooth” and followed the 
analytic result. 

(c) Line 26: Same comment as for line 9 for fx1. 

(d) Line 37: Loop through the screens. 

(e) Line 39: The random number generator randn creates an array of 
zero-mean normally distributed random values. Scaling the phase 
function (x,y) appropriately requires several factors: /dfx1 comes 
from Eq. (9.25); M^2 counteracts the 1/MN factor that accompanies 
the ifft2 function; dfx1^2 is applied to correctly approximate the 
inverse Fourier transform integral. 

Regarding lines 21–23, there is some flexibility in the choice of r and f for a 
given value of cr . The approach used here for selecting r and f is to first 

invert Eq. (9.21) to get 2f 
2/r

2 << 1. This result is combined with Eq. (9.23) to 

give f 
2 >> 2

cr /2 and, finally, the choice of f = 2.5 cr  is made. This approach 

selects roughly the smallest value of f that allows Eq. (9.21) to be satisfied. For 
this example, cr = 8 mm, thus f = 20 mm, and from Eq. (9.23), r = 177.2 mm. 

When f is too large, say roughly f > L/2, then the passband of the filter F is 
only defined by a few samples in the frequency domain, and the screen generated 
can become inaccurate. Large correlation lengths cr lead to this problem, and 
the failure mode of the simulation in this situation is to output the perfectly 
coherent result. Sometimes choosing f to be smaller, for example, f = 2 cr  or 
less, can help with this problem. This approach can still yield good results even 
though Eq. (9.21) is violated. 

Before discussing the irradiance results for the pc_spatial script, it is 
informative to look at a few of the random phase screens that are applied to the 
source plane. Two realizations generated with the pc_spatial parameters are 
shown in Fig. 9.10. The phase values and apparent variations seem reasonable for 
f = 20 mm. One hundred realizations of the phase screens are applied in 
pc_spatial. Be aware that if phase excursions for the screens become large, 
 



Partial Coherence Simulation 185 

  

 
(a) 

 
(b) 

 
Figure 9.10 Two random realizations of (x, y) for the pc_spatial example. 

 
the phase can become undersampled, and aliasing can result, as discussed for 
aberrated wavefronts in Section 8.6.  

Executing pc_spatial generates the irradiance results in Fig. 9.11. The 
partial spatial coherence creates a reduction in the interference fringe contrast 
that is similar to the temporal coherent case (Fig. 9.5). The analytic solution for 
this case is given by 
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 (9.27) 
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Figure 9.11 Partial spatial coherence results for pc_spatial where cr  = 8 cm: (a) 

irradiance image and (b) x-axis profile. The x axis in (b) is expanded for a better view of 
the center of the pattern. Points in (b) are from the analytic result. 

 
The result in Eq. (9.27) breaks down if the transverse coherence length is on the 
order of, or smaller than, the beam diameters.  

9.3 Reducibility, Number of Spectral Components, and Phase 
Screens 

Temporal and spatial coherence are treated separately in the developments of the 
previous sections. However, the general form of the complex degree of 
coherence 12() encompasses both temporal and spatial field correlations and can 
include cross-correlations of the frequency components. Coherence separation 
implies 12() can be factored into a temporal term and spatial term product, or1 
 
   )(1212   . (9.28) 
 
This factoring is possible if the light is cross-spectrally pure. Roughly speaking, 
cross-spectral purity means the coherence properties of the light are position 
independent. In practice, this can be a reasonable assumption for many optical 
sources, for example, lasers. However, exceptions exist such as light from a 
source with an angle-dependent spectral density.1 A coherence function that can 
be factored, as in Eq. (9.28), is said to be reducible. All examples illustrated in 
this chapter assume the source coherence function is reducible. 

Little discussion was provided with regard to the number of spectral 
components in the temporal coherence modeling. The number was simply chosen 
through experimentation. This and other related issues have been considered in 
more detail by other authors. For example, Rydberg and Bengtsson discuss 
spectral sampling and extend the method to consider pulsed optical sources.7 

|12| = 0.68 CR  = 8 mm 
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Similarly, the parameter values and the number of applied phase screens for 
spatial coherence simulation were chosen through experimentation, and a 
criterion for the minimum number of screens was not proposed. Spatial 
coherence modeling is a more recent activity, and some of these issues have yet 
to be fully investigated. This leaves plenty of room for more study and 
development. 

9.4 Exercises 

9.1 A rectangular lineshape is given by 
  

 
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)(Ŝ , (9.29) 

  
 and the coherence time for this lineshape is1 

 

 






1

c . (9.30) 

 

(a) Alter the pc_temp code to use this lineshape. Keep the simulation 
parameters the same (0 = 650 nm,  = 2 GHz, w = 1 mm, s = 5 
mm, f = 0.25 m, and d = 5 cm). Generate a simulated irradiance 
pattern and profile.  

(b) Derive an expression for | ()|. Find the value for | ()| given the 
parameters in step (a). 

(c) Compare the simulation result in step (a) with the analytic result.  
 
9.2 Fringe shift: A sensitive method for determining the path length difference 

between two coherent beams is to examine the apparent “translation” of 
fringes created in the Fraunhofer pattern. Start with the pc_temp example. 

(a) Alter the script to generate the Fraunhofer pattern for a coherent 
beam (0 = 650 nm). Essentially remove the looping. 

(b) Create irradiance profiles for d = 0, 0/4, 0/2, and 03/4. Is there a 
limitation in terms of the amount of optical path difference that can 
be measured using this technique? 

 
9.3 If the two beams in Fig. 9.4 have different field magnitudes given by A1 and 

A2, a quantity known as the visibility is defined as 
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Consider the pc_temp example (d = 5 cm) and assume A1 = 0.72, A2 = 
0.20. 

(a) What is the value of the visibility? 

(b) Alter the pc_temp script and generate an irradiance profile. 

(c) With the help of Exercise 4.5 and combining Eqs. (9.31) and (9.10), 
“propose” an analytic expression for the Fraunhofer pattern and test 
it against the simulation result. 

 
9.4 Implement the pc_spatial simulation and the analytic solution [Eq. (9.27)] 

for irradiance profile comparison. Generate irradiance results for cr = 15, 8, 

4, and 1 mm. What are the corresponding values of |12|? Recall that if f > 
L/2 the simulation can become inaccurate. For the 15-mm case, try adjusting 
the 2.5 multiplier in line 21 to a smaller value. More screen realizations may 
be needed to get a good 1-mm result. Can you explain the 1-mm result?  

 
9.5 Replace the two beams in the pc_spatial example with a single 5 mm  2 

mm rectangular aperture (illuminated with a unit amplitude plane wave). 
Examine the Fraunhofer patterns for cr  ranging from 20 mm to 1 mm. Can 
you explain the result? 

 
9.6 Gaussian Schell-model beam: A Gaussian Schell-model (GSM) beam has a 

Gaussian amplitude envelope and a Gaussian spatial correlation function. 
This beam has been studied extensively for laser communication 
applications.13 The irradiance of the GSM beam is given by2,10 
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and w0 is the initial beam size parameter. The source beam field is given by 
 

 








 


2
0

22

1 exp
w

yx
U . (9.34) 

 



Partial Coherence Simulation 189 

Develop a propagation simulation for a GSM beam. The parameters are w0 = 
2 cm,  = 1.06 m, z = 1 km, and cr = 1 cm. Use an array size of M = 256. 
Choose other necessary parameters. Experiment with the number of random 
screen realizations. The more, the better, in terms of result accuracy—but 
execution time can get long. 

(a) Plot irradiance profiles of the initial beam at the source plane and the 
perfectly coherent beam and the GSM beam at the observation plane. 

(b) Compare the GSM beam profile with the analytic theory. 
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Appendix A 

Fresnel Propagator Chirp 
Sampling 
 
 
The transfer function (TF) H and impulse response (IR) h Fresnel propagators are 
introduced in Chapter 5. Although analytically identical, the methods produce 
different results with sampled data. The culprit is the sampled chirp functions 
that are a part of H and h. In this appendix, sampling regimes are derived for the 
chirp functions, and it is shown that the sense of the regimes is reversed for the 
two methods. Both methods involve FFT and FFT−1 operations, so the effects of 
performing these discrete transforms on the sampled H and h are illustrated. 

A.1 Fresnel Transfer Function Sampling 

The Fresnel transfer function 
 

  2 2( , ) exp πjkz
X Y X YH f f e j z f f     , (A.1) 

 
contains a complex exponential term with a phase function whose absolute value 
increases with the square of the frequency variables. This type of function is 
referred to as a “chirp” function, a label that was originally applied to similar 
functions in the temporal or spatial domains. Sampling a chirp function, as 
required for a propagation simulation, can be problematic because of the 
increasing slope of the phase with frequency.1 Only the phase of the chirp term in 
Eq. (A.1) is a function of frequency, so extracting the phase gives 
 

    2 2, πH X Y X Yf f z f f    . (A.2) 

 
Only one transverse direction needs to be examined, as the sampling constraints 
for the two orthogonal variables can be evaluated separately. For a uniform 
sample interval of fX the criterion for an unambiguous representation of the 
phase when it is encoded in a modulo-2 format, which is the case for a complex 
exponential term, can be written as 
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This expression states that the maximum change in the absolute phase must be no 
more than  between any two adjacent samples (see, for example, reference 2). If 
this constraint is violated, then aliased phase values result. The slope is found to 
be / 2πH X Xf zf     , and since  and z are constants for a given propagation, 

the maximum slope occurs when fX is a maximum (fX max). Inserting this 
information into Eq. (A.3) and solving for fX gives the following criterion for 
the sample interval: 
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Although sampling of the transfer function occurs in the frequency domain, it 

is helpful to consider the corresponding sampling in the spatial domain. 
Assuming the frequency and spatial domain sampling are related through the 

scaling properties of the FFT, then Lf X /1  and 1 / 2Xmaxf x  , where L is 

the side length and x is the sample interval in the spatial domain. Substituting 
these relations in Eq. (A.4) and solving for x yields the following spatial 
domain criterion: 
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With reference to Eq. (A.5), three sampling regimes for the transfer function H 
are now discussed. 

A.1.1 Oversampled transfer function 

The transfer function is oversampled when 
 

 
L

z
x


 . (A.6) 

 

This is the case for a relatively “short” propagation distance or wavelength. 
Figure A.1(a) shows an example profile of the argument of H when H is 
oversampled. The argument of H is unwrapped to allow comparison with the 
analytic phase H of Eq. (A.2). The two curves in Fig. A.1(a) are identical, thus 
the condition in Eq. (A.6) usually provides acceptable simulation results. 
However, looking further at this case, consider that U2 can be described by 
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Figure A.1 Magnitude and phase (unwrapped argument) results for the transfer function 
H (left column) and the FFT−1{H} (right column). H is oversampled for (a) and (b); critically 
sampled for (c) and (d); and undersampled for (e) and (f). Solid lines are the discrete 
results; dashed lines are analytic curves. Phase is downward or upward parabolic curves. 
The gray “hash” in (f) is the rapidly oscillating magnitude. 

 
  ),(),(),( 1

12 YX ffHyxUyxU  . (A.7) 
 
Ideally, FFT−1{H} should be a sampled version of the impulse function h, 
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Figure A.1(b) shows a profile of the magnitude and unwrapped phase for 
FFT−1{H} corresponding to Fig. A.1(a). Rather than a constant magnitude value, 
a window-like function appears. The phase result follows the analytic phase but 
limits at an absolute slope of . 

The phase result of Fig. A.1(b) is not of much consequence in this case, but 
the window-like magnitude requires some discussion. Goodman shows this 
window-like magnitude form is expected for the transform of a chirp function 
windowed with a rectangle function (see pp. 15–18 in Introduction to Fourier 
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Optics).3 The effective full width of the windowed magnitude form in Fig. A.1(b) 
is approximately 
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 For a source field with support D1 and considering the convolution of Eq. 
(A.7) with the result of Eq. (A.9), the width D2 of the field in the observation 
plane that can be modeled accurately is approximately limited by 
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Thus, for an accurate result, the field in the observation plane should fit within 
the width D1 + z/x, which for oversampling is usually smaller than L. So 
oversampling H can limit the support available in the observation plane. For 
simple source functions, the most significant part of the field in the observation 
plane typically fits within D1 + z/x; so, the limitation tends to affect the 
“wings” of the field. 

A.1.2 Critically sampled transfer function 

The transfer function is critically sampled when 
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It is a remarkable property of sampled chirp functions that when Eq. (A.11) is 
true, the sampled FFT pair, H and h, exactly match the analytic pair H and h. 
Figure A.1(c) illustrates that the sampled H and FFT−1{H} exactly match the 
analytic functions. We might take the view that under ideal sampling conditions 
the periodicity of the sampled FFT pair, h and H, exactly matches the periodicity 
inherent in the FFT. Ideal sampling allows full use of the source and observation 
plane support and bandwidth allocation. 

As might be expected, ideal sampling usually provides a simulation result 
that most closely follows the analytic Fresnel result. 

A.1.3 Undersampled transfer function 

The transfer function is undersampled when 
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This is the relatively “long” distance propagation scenario. Figure A.1(e) shows 
the unwrapped argument of H for the case where x = z/2L. Undersampling 
results in a repetition of the fundamental phase profile where the periodic forms 
are actually comprised of aliased phase values. The “cusps” in the phase profile 
are characteristic of phase aliasing. The full spectral width where the phase is 
unaliased is given by 
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The aliased phase values can lead to significant artifacts in a simulation. This is 
suggested in Fig. A.1(f), which shows FFT−1{H}. In Fig. A.1(f), the magnitude 
oscillates every other sample between a value of zero and 2/z, which causes the 
gray appearance. In a simulation result this situation tends to cause “spiky” and 
“stair-step” artifacts in the observation plane field. 

By avoiding the aliased part of the phase in a simulation, the spiky and stair-
step artifacts can be reduced. So, for this sampling regime the following 
requirement is placed on the source bandwidth B1: 
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Thus, undersampling H tends to limit the spatial bandwidth that is available in 
the source plane. 

For ideal sampling, Eq. (A.14) becomes B1  1/2x, which is simply the 
sampling theorem. Violating Eq. (A.14) also implies that significant parts of the 
observation field may not fit within the array side length. This can be argued by 
rearranging Eq. (A.14) to 2B1z  L and recognizing that 2B1z is the width 
(support) of the Fraunhofer pattern. 

A.2 Fresnel Impulse Response Function Sampling 

The Fresnel impulse response, repeated here, 
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contains a spatial chirp function, and extracting the phase yields 
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Proceeding in the same manner as for the transfer function, the criterion for 
adequately sampling the impulse response is  
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Typically, 2/max Lx  , so Eq. (A.17) becomes 
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The sense of Eqs. (A.5) and (A.18) is exactly opposite, and the two criteria are 
only satisfied simultaneously when x = z/L, which is the critical sampling 
condition. 

A.2.1 Undersampled impulse response 

The undersampled impulse response condition is 
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which is the “short” distance scenario. The situation for h is shown in Fig. A.2(a). 
The magnitude of h is as expected (flat line) but the phase is aliased as evidenced 
by the cusps in the profile. The width between the phase cusps is 
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The FFT{h}, shown in Fig. A.2(b), displays the same trouble seen in Fig. A.1(f). 
Envisioning the IR propagation method as hU1, then based on Eq. (A.20) the 
observation plane field will have a repeated form with an interval of z/x. So, in 
its own way the IR approach also limits the support available in the observation 
plane for the “short” distance scenario. 

A.2.2 Critically sampled impulse response 

For the critical sampling condition 
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the sampled impulse response and its FFT are exactly the same as the analytic 
expression and exactly the same as the transfer function results [Figs. A.1(c) and 
(d)].  
 



Fresnel Propagator Chirp Sampling 197 

 
Figure A.2 Magnitude and phase (unwrapped argument) results for the impulse 
response h (left column) and FFT{h} (right column). h is undersampled for (a) and (b); 
critically sampled for (c) and (d); and oversampled for (e) and (f). Solid lines are the 
discrete results; dashed lines are analytic curves. Phase is an upward or downward 
parabolic curve. The gray “hash” in (b) is the rapidly oscillating magnitude. 
 

A.2.3 Oversampled impulse response 

For the “long” distance scenario, the impulse response is oversampled: 
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Here, the magnitude and phase of h follow the analytic form [Fig. A.2(e)] but 
FFT{h} shows the windowed magnitude form and the limiting phase effect [Fig. 
A.2(f)]. The full width of the magnitude window in the frequency domain is  
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This window acts as a low-pass filter such that source frequency content greater 
than  L/(2z) is significantly attenuated. Thus, the IR approach also limits the 
spatial bandwidth that is available in the source plane. 

A.3 Summary 

(a)  For the “short distance” both the TF and IR approaches effectively limit 
the available support in the observation plane. The TF approach 
limitation is D  z/x. Beyond this limit, the TF approach primarily 
attenuates the field. The IR approach creates copies of the observation 
plane field. The TF result is usually preferred in this regime. 

(b)  For critical sampling the approaches yield identical results. The TF 
method requires one less FFT, so it is usually preferred. 

(c)  For the “long distance” case, the limit to the available bandwidth in the 
source plane is B  L/z for both the TF and IR approaches. The IR 
approach primarily attenuates the source spectra beyond the limit, 
whereas the TF approach applies an aliased phase. The IR result is 
typically more usable in this case. 
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Appendix B 

Fresnel Two-Step Propagator 
 
 
In some situations it is convenient for the source and observation plane side 
lengths to be different; for example, when a specific geometry in the source and 
observation planes must be maintained. A two-step propagation method 
developed in the 1980s and described more recently by others allows the side 
lengths to be chosen independently.1–4 

B.1 Approach 

The approach is derived by envisioning two artificial Fresnel propagations (Fig. 
B.1). The first is a propagation of the source field U1(x1, y1), a distance z1 to a 
dummy plane, where Ud(xd, yd) indicates the dummy plane field. The second is 
the propagation of the observation plane field U2(x2, y2) a distance z2 to the 
dummy plane. Using Eq. (4.25), these propagations can be written as 
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Figure B.1 Fresnel two-step propagation concept. 
 
Equate the dummy plane fields and rearrange terms to find the field at the 
observation plane in terms of the source field, 
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  (B.2) 
 
The propagation distance from the source to the observation plane is given by 
 
 21 zzz  . (B.3) 
 
The dummy plane coordinates are related to the transform frequencies in the 
source and observation planes by 
 
  2211 XXd fzfzx   . (B.4) 
 
Only the x dimension is indicated here, but y-dimension parameters follow 
similarly. With discrete sampling, the source and observation plane side lengths 
are given by  
 
  L1= Mx1,  L2= Mx2, (B.5) 
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where M is the number of samples (linear) and x1 and x2 are the respective 
sample intervals. In frequency space fX1 = p/2x1 and fX2 = p/2x2, where p is an 
index ranging from −M/2 to M/2−1. With these definitions and applying Eq. 
(B.4) we find  
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With the help of Eq. (B.3), the following are derived: 
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It is acceptable for L2 > L1, where z1 and z2 are negative and imply the dummy 
plane is located to the “left” of the source and observation planes. Substitute 

11 Xd fzx  , 11 Yd fzy  , and Eq. (B.7) into Eq. (B.2), and perform the algebra 
necessary to find 
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  (B.8) 
 
The expression in Eq. (B.8) is the basis for the two-step propagator, where the 
source and observation plane side lengths, L1 and L2, respectively, can be chosen 
independently. In a simulation, the source and observation plane coordinates are 
defined in the usual way: 
 
 ]2/::2/[ 11111 xLxLx  , 
 
 ]2/::2/[ 22222 xLxLx  . (B.9) 
 
Examining Eq. (B.8), it is apparent that when L1 = L2 the two-step method 
collapses to the transfer function method described in Section 5.1. 
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B.2 Sampling Considerations 

Sampling considerations for the two-step method can be approached by first 
defining the oversampled regimes for the three chirp functions in Eq. (B.8). The 
source chirp given by 
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is oversampled when x1  z1/L1 (see Appendix A). Using the relation for z1 in 
Eq. (B.7) yields 
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The absolute value accounts for the case where L2 > L1. For the observation plane 
chirp, 
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the requirement for oversampling is x2  z2/L2, which leads to 
 x2  z/|L1 − L2|. To allow for comparison in terms of the source plane 
sampling, apply Eq. (B.6) to get 
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For the frequency domain chirp, 
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following arguments that led to Eq. (A.5), this chirp is oversampled when 
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For critical sampling, Eqs. (B.10)–(B.12) become equalities. Equating Eqs. 
(B.10) and (B.11) results in the condition L2 = L1. Thus, critical sampling requires 
the side lengths to be equal. Also, under critical sampling, Eq. (B.12) gives the 
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familiar critical sampling criterion 11 / Lzx  . As noted previously, with L2 = 
L1 the two-step method is identical to the transfer function (TF) approach. 

The utility of the two-step approach is that L1 and L2 can be different sizes, 
although this requires noncritical sampling. Sampling criteria involving the 
source bandwidth or support are complicated to develop for this method, as there 
are a number of possible combinations depending on simulation parameter 
choices. A few examples follow. 

B.2.1 Similar side lengths 

A common simulation situation is where the side length difference |L1 − L2| is 
relatively small. This arrangement may be used, for example, when modeling a 
propagating field that is slowly expanding. Under this circumstance the source 
and observation chirps are likely to be oversampled [i.e., Eqs. (B.10) and (B.12) 
are true]. 

For the frequency chirp, consider the right side of Eq. (B.8) where the 
product of the source field U1 and source chirp function are Fourier transformed. 
This results in a convolution of the spectra of these two quantities. The 
approximate full width of this transform spectrum is the spectral width of U1, 
which is 2B1, plus the spectral width of the source chirp function. The source 
chirp full spectral width is found to be ~ (L2−L1)/(z) [see Eq. (A.13)]. 
Furthermore, if the frequency domain chirp is undersampled, it will have an 
unaliased full width of ~ L2/(z). The sampling criterion is found by recognizing 
that the width of the transform result should “fit” within the unaliased frequency 
chirp width. This is stated as 
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Rearranging Eq. (B.13) yields 
 

 
z

L
B

2
1

1  , (B.14) 

 
which is identical to the oversampling condition for the transfer function method 
(Table 5.1). To summarize, when L1 and L2 are close to the same size, the two-
step sampling criterion is essentially the same as the TF approach. The size of the 
observation plane L2 is not a factor in the criterion. L2 affects the observation 
plane chirp, but this term is oversampled and therefore not of concern. 

B.2.2 Significantly different side lengths 

When L1 and L2 differ significantly, by a factor of 2 or more, the source chirp can 
have an aliasing problem. The center support region in which the chirp phase is 
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unaliased is ~ z/x1 [see Eq. (A.12)]. For the source to avoid the aliased region, 
the following is necessary: 
 

 
1

1 x

z
D





, (B.15) 

 
where D1 is the source support. Further trouble can be caused by frequency chirp 
aliasing, but the specific effect depends on the ratio L1/L2. 

B.2.3 Comments and recommendations 

(a)  The two-step method reduces to the transfer function for critical 
sampling including the requirement L1 = L2. 

(b)  Choosing L1 and L2 to be different forces noncritical sampling. Sampling 
criteria depend on the relationship between L1 and L2.  

(c)  The two-step method suffers the same type of artifacts as the TF 
approach for longer distances; however, replacing the frequency chirp 
term with a “windowed” chirp term allows performance similar to the 
impulse response (IR) approach.5 

(d)  The implication of the sampling investigation is that the two-step method 
does not alleviate the sampling constraints discussed in Chapter 5 for the 
Fresnel propagators. It provides a method to resample the observation 
plane grid within the propagation process. 

(e)  Experience suggests working close to the critical sampling regime (L1  
L2) results in the least artifacts. If L2 > L1 (for example, more than a 
factor of 2 or 3) the result tends to pick up sidelobes in the wings of the 
pattern. If L2 < L1 the pattern tends to pick up spiky artifacts or 
oscillations. 

B.3 MATLAB Code 

The expression in Eq. (B.8) is coded in the following function prop2step: 
 

1 function[u2]=prop2step(u1,L1,L2,lambda,z) 
2 % propagation - 2 step Fresnel diffraction method 
3 % assumes uniform sampling and square array 
4 % u1 - complex field at source plane 
5 % L1 - source plane side-length 
6 % L2 - observation plane side-length 
7 % lambda - wavelength  
8 % z - propagation distance 
9 % u2 - output field at observation plane 
10 % 
11 [M,N]=size(u1);       %input array size 
12 k=2*pi/lambda;        %wavenumber 
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13  
14 % source plane 
15 dx1=L1/M; 
16 x1=-L1/2:dx1:L1/2-dx1; 
17 [X,Y]=meshgrid(x1,x1); 
18 u=u1.*exp(j*k/(2*z*L1)*(L1-L2)*(X.^2+Y.^2)); 
19 u=fft2(fftshift(u)); 
20  
21 % dummy (frequency) plane 
22 fx1=-1/(2*dx1):1/L1:1/(2*dx1)-1/L1; 
23 fx1=fftshift(fx1); 
24 [FX1,FY1]=meshgrid(fx1,fx1); 
25 u=exp(-j*pi*lambda*z*L1/L2*(FX1.^2+FY1.^2)).*u; 
26 u=ifftshift(ifft2(u)); 
27  
28 % observation plane 
29 dx2=L2/M; 
30 x2=-L2/2:dx2:L2/2-dx2; 
31 [X,Y]=meshgrid(x2,x2); 
32 u2=(L2/L1)*u.*exp(-j*k/(2*z*L2)*(L1-L2)*(X.^2+Y.^2)); 
33 u2=u2*dx1^2/dx2^2;   %x1 to x2 scale adjustment 
34 end 
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Appendix C 

MATLAB Function Listings 
 

C.1 Circle 

function[out]=circ(r); 
% 
% circle function 
% 
% evaluates circ(r) 
% note: returns odd number of samples for diameter 
% 
out=abs(r)<=1; 
end 
 

C.2 Jinc 

function[out]=jinc(x); 
% 
% jinc function 
% 
% evaluates J1(2*pi*x)/x 
% with divide by zero fix 
% 
% locate non-zero elements of x 
mask=(x~=0); 
% initialize output with pi (value for x=0) 
out=pi*ones(size(x)); 
% compute output values for all other x 
out(mask)=besselj(1,2*pi*x(mask))./(x(mask)); 
end 
 

C.3 Rectangle 

function[out]=rect(x); 
% 
% rectangle function 
% 
% evaluates rect(x) 
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% note: returns odd number of samples for full width 
% 
out=abs(x)<=1/2; 
end 
 

C.4 Triangle 

function[out]=tri(x) 
% 
% triangle function 
% 
% evaluates tri(x) 
% 
% create lines 
t=1-abs(x); 
% keep lines for |x|<=1, out=0 otherwise 
mask=abs(x)<=1; 
out=t.*mask; 
end 
 

C.5 Unit Sample “Comb” 

function[out]=ucomb(x); 
% 
% unit sample “comb” function 
% 
% sequence of unit values for x=integer value 
% round is used to truncate roundoff error 
% 
x=round(x*10^6)/10^6;   %round to 10^6ths place 
out=rem(x,1)==0;        %place 1 in out where rem = 0 
end 
 

C.6 Unit Sample “Delta” 

function[out]=udelta(x); 
% 
% unit sample “delta” function 
% 
% unit value for x=0 
% round is used to truncate roundoff error 
% 
x=round(x*10^6)/10^6;  %round to 10^6ths place 
out=x==0;              %place 1 in out where x = 0 
end 
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Appendix D 

Exercise Answers and Results 
 
 
D.1 Chapter 1 

Exercise 1.1  
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Exercise 1.2 
 

(a)    YX wfwfw 2sinc2sinc4 2 ;  

(b)      24 sinc 2 sinc 2 exp 2πX Y Xw wf wf j df ; 

(c)  2 2 2 2π exp π X Yw w f f    ; 

(d) 
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Exercise 1.3 
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Exercise 1.4 

(a) 














w

y

w

x
w

22
4 2 ; 
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Exercise 1.5 
 

(a) 8w2; 
(b) 9. 

 

Exercise 1.6 
 

(a) Linear, space invariant. 
(b) Nonlinear, this is an affine transformation, but space invariant. 
(c) Nonlinear, space invariant. 
(d) Linear, not space invariant. 
(e) Linear, space invariant. 

 
 
D.2 Chapter 2 

Exercise 2.1 
 

  Sample number: 500   
Nyquist frequency: 500; 5  104 cycles/m. 

  Frequency sample interval: 200 cycles/m; 
  Range of coordinates in the spatial domain: [−2.5, 2.49 mm]; 
  Range of coordinates in the frequency domain: [−5  104, 4.98  104   

cycles/m]. 
 

Exercise 2.2 
 

(a) 10 cycles/mm, 0.05 mm, 12.8 mm; 
(b) 0.446 cycles/mm; 1.12 mm; 287 mm. 

 

Exercise 2.3 
 

    2.42w. 
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Exercise 2.4 
 

(a) 1/(2w); 
(b) 1/w. 

 
Exercise 2.5 

(a) 6d; 
(b) 4d. 

 
 
D.3 Chapter 3 

Exercise 3.1 
(e) )(sinc2

Xwfw .  
(f) Phase plot should be zero for all frequencies, but finite calculation 

precision results in jumps at zero magnitude positions. 
 

-1 -0.5 0 0.5 1
0

0.5

1
triangle

x (m)  
-50 0 50
0

0.05

0.1

magnitude

fx (cyc/m)

 

 

 
-50 0 50

-2

0

2

phase

fx (cyc/m)

 

 

 
 
Exercise 3.2 
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Exercise 3.3 
 

  (a)–(d): 
 

x (m)

y 
(m

)

-0.1 -0.05 0 0.05
-0.1

-0.05

0

0.05

-500 0 500
0

2

4

6

x 10
-4 magnitude

fx (cyc/m)  
 
 

 



212  Appendix D 

D.4 Chapter 4 

Exercise 4.1 
 

    11OPD 2211  nkdnkd . 
 
Exercise 4.2 
 

 RS, z >> ; using NF criteria: Fresnel z > ~2 m,  Fraunhofer  z > ~20 m. 
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  z = 5 m; L = 0.2 m 
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  z = 50 m; L = 0.2 m 

x (m)

y 
(m

)

-0.1 -0.05 0 0.05
-0.1

-0.05

0

0.05

-0.1 0 0.1
0

0.005

0.01

x(m)

Ir
ra

di
an

ce

 
 

(c)  
 2 2

12
2

2π
2

, cos π

k
j x yjkz z

w
J r

e e sz
U x y w x

wj z zr
z


 




  

        
   
  

; 

 

2

2 1
2 2

2π
2

, cos π

w
J r

sz
I x y w x

wz zr
z


 



  
            

    
  

. 

 
 
 z = 50 m; L = 0.1 m 
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Exercise 4.5 
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D.5 Chapter 5 

Exercise 5.1 
 

(a) 0.5 m, 0.001 m, 500 cycles/m. 
(b) 100 cycles/ m, yes, 100; 5, okay for this simple aperture. 
(d) Axes scaled for display. 
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Exercise 5.2 
 

 (a) Simulation for L1 = 2 mm. Axes scaled for display. 
 
 

x (m)

y 
(m

)

TF z= 0.005 m

-5 0 5

x 10
-4

-5

0

5
x 10

-4

 
x (m)

y 
(m

)

TF z= 0.01 m

-5 0 5

x 10
-4

-5

0

5
x 10

-4

 
x (m)

y 
(m

)

IR z= 0.05 m

-5 0 5

x 10
-4

-5

0

5
x 10

-4

 
 
 
 (b) Simulation with L1 = 2.5 cm. Axes scaled for display. 
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 (c) Simulation run with L1 = 2.5 cm. Axes scaled for display. 
 

x (m)

y 
(m

)

TF z= 0.5 m

-5 0 5

x 10
-3

-5

0

5
x 10

-3

 
x (m)

y 
(m

)

TF z= 2 m

-5 0 5

x 10
-3

-5

0

5
x 10

-3

 
x (m)

y 
(m

)

IR z= 5 m

-5 0 5

x 10
-3

-5

0

5
x 10

-3

 
 

 z for critical sampling: (a) 1.26 cm; (b) 1.97 m; (c) 1.97 m. 
 
Exercise 5.3 
 

(a) P = 0.0104. 
(b)  Discrepancies for long-distance IR results. 

 
Exercise 5.4 
 

(b) Subtle differences. 
(c) 5.2, 2.6, 1.3, 0.26. The Fresnel propagator results compare well with 

the Rayleigh–Sommerfeld results for all ranges.  
 

Exercise 5.5 
 

     (a) 
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(b) 1.42 m; B1 = 445.7 cycles/m < 1185 cycles/m—criterion is met. 
 
Exercise 5.6 
 

  Results should be the same. 
 
Exercise 5.7 
 

 (a) 
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Exercise 5.8 
 

  M >> 100 
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Exercise 5.9 
 

(a) 
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(b) L2 = 0.2 m—spiky features; L2 = 1 m—loss of oscillations in the 
wings. 

 

 

D.6 Chapter 6 

Exercise 6.2 
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Exercise 6.3 
 

 (b) 
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(c) No, the Fresnel propagation chirp is canceled only in one axis.  
However, for a simulation the single FFT propagation [Eq. (4.25)] can be 
used. 
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Exercise 6.5 
 

(a) Creates both converging and diverging wavefronts. 
(b) r  f/(2w).  
(c) x = 0.1 mm, f/(2w) = 0.4 mm—criterion is satisfied. 
(d) Critical sampling (use TF). 

       (e) 
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     (g) and (h) x axis is scaled for display. 
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The sign(cos) zone plate puts more irradiance on axis because more light is 
transmitted overall through the plate. The diffraction limited lens has a peak 
irradiance ~ 10 times larger than the sign(cos) zone plate. 
 

Exercise 6.6 
 

 To sample the periodic square wave consistently requires M = i·L1/P = i·100, 
where i is an integer. But to also get an odd number of samples across the 
rect requires M = 2(1 + 2i)·L1/P. So, the values of M that work are 200, 600, 
1000, 1400, etc. Therefore, 1400 is the next value above 1000. 

 
Exercise 6.7 
 

 Examples: 
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Exercise 6.8 
 

(a) One set of acceptable parameters is L1 = 0.8  10−3 and M = 3200. 
From Eq. (6.21) this gives eight samples across P. 
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  (c) 
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D.7 Chapter 7 

Exercise 7.1 
 

(a) 66.7 mm, −0.33. 
(b) 20 mm, 66.7 mm, 3.33. 
(c) z2  f. 

 
Exercise 7.2 
 

(a) 8, 106 cycles/mm, 213 cycles/mm. 
(b) Δu ≤ 2.3 m. 
(c) M  435. 

 
Exercise 7.3 
 

       (a) fox = 40 cycles/mm; foy = 20 cycles/mm; 2fox = 80 cycles/mm; 2foy = 
40 cycles/mm. 

 (b) 
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(d)  Less resolution is observed in the horizontal bars than the vertical 
bars.  
 

Exercise 7.4 
 

(a) fo = 40 cycles/mm;  2fo = 80 cycles/mm. 
    
 
 
    (b) 
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Exercise 7.5 
 

(a) Smaller phase variance  less speckle contrast. 
(b) Smaller aperture  larger speckle lobes. 

 
Exercise 7.6 
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Exercise 7.7 
 

(a) 12.2 m. 
(b) 1.2 m; S  10. 
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(d) Dip ~ 20%. 
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Exercise 7.8 
 

(a) 7  105. 
(b) 2.86 cycles/m; 0.43 m. 
(c) 0.175 m; 179.2 m. 

 
Exercise 7.9 
 

  (b) 

 
  (c) 

 
  (d) 

 
 



Exercise Answers and Results 223 

The approximate analytic profiles have slight bias relative to the simulation 
profiles. The overall average image irradiance should be 1, which is true for 
the simulation result but not true for the analytic expressions.  
 

Exercise 7.10 
 

x (m)

y 
(m

)

-4 -2 0 2 4

x 10
-3

-4

-2

0

2

4

x 10
-3

 
 

 

D.8 Chapter 8 

Exercise 8.1 
 

       (a) 363 cycles/mm; 512 cycles/mm; yes. 

 
 
Exercise 8.2 
 

       (b)  Wd   W040 gives smallest peak-to-peak value for W. 
 
Exercise 8.3 
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Peak PSF value corresponds to δd = −0.5 mm, therefore, Wd = −4.5λ. This value 
roughly “balances” the initial spherical aberration for the on-axis image point 
(W040 = 4.96λ). 
 
Exercise 8.4 
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Exercise 8.5 
 

 Wd = 19.4. When the OPD function is undersampled, for example, Wd = 25— 
the resulting PSF extends beyond the array boundaries. 
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Exercise 8.6 
 

 Similar to Seidel results. 
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Exercise 8.7 
 

(a) (d) (f) 
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Exercise 8.8 
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       (e) S = 0.0212 for on-axis point. 
 

 

D.9 Chapter 9 

Exercise 9.1 
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(a)  

-2 0 2

x 10
-4

0

500

1000

x (m)
 

 
(b)  |sinc(d/c)| 

 
 
Exercise 9.2 
  
       (b) range of 1. 
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Exercise 9.3 
 

(b)  V = 0.335. 
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Exercise 9.4 
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Exercise 9.5 
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Exercise 9.6 
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Index 
 
 
aberrations, 141 
abs, 36 
Airy pattern, 97, 109, 134 
aliasing, 15, 16, 24, 71 
angle, 36 
aperture stop, 114 
astigmatism, 143 
autocorrelation theorem, 4 
axis, 33 
axis square, 42 
axis xy, 42 
 
bandlimited function, 14 
Bessel function, 7 
besselj, 58 
 
centered arrangement, 21 
central ordinate theorem, 4 
chirp function, 7, 191 
chromatic aberration, 141 
circ, 207 
circle function, 5, 45, 207 
circshift, 159 
coh_image, 120 
coherence, 48, 169 
coherence length, 171 
coherence time, 171 
coherent cutoff frequency, 118 
coherent image transfer function, 

117, 147 
coherent imaging, 116 
colormap, 42 
coma, 143 
comb function, 5 
command history, 29 
 

 
 
 
 
 
 
 
 
 
command window, 29 
complex coherence factor, 177, 182 
complex degree of temporal 

coherence, 171, 176 
conv_example, 40 
converging wavefront, 93 
convolution integral, 9 
convolution theorem, 4 
coordinates, 20 
critically sampled condition, 73, 

194, 196 
cross-correlation theorem, 4 
cross-spectrally pure, 187 
current directory, 29 
cylindrical lens, 108 
 
defocus, 144 
diffraction, 47 
diffraction limited, 117 
discrete Fourier transform (DFT), 

18 
distortion, 143 
diverging wavefront, 93 
 
editor window, 30 
effective bandwidth, 15 
entrance pupil, 114 
exit pupil, 114 
 
fast Fourier transform (FFT), 18 
fft, 45 
fft_example, 32 
fft2, 45 
fft2_example, 41 
fftshift, 34 
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field curvature, 143 
field of view, 149 
figure, 32 
flipud, 121 
f-number (f /#), 96, 115 
focal length, 96, 113 
focal plane, 97 
focal ratio, 96 
focus, 93, 94 
Fourier integral theorem, 4 
Fourier transform, 3 
Fourier transform, inverse, 3 
fractional image height, 142 
fraun_circ, 58 
Fraunhofer diffraction, 55 
Fraunhofer region, 56 
free space optical propagation, 48 
Fresnel diffraction, 53 
Fresnel impulse response 

propagator, 65, 195 
Fresnel integrals, 75 
Fresnel number, 55, 56 
Fresnel propagators, 191 
Fresnel transfer function propagator, 

63, 191 
Fresnel two-step propagator, 79, 199 
fringe shift, 188 
function, 30 
functions, list of, 5 
 
Gaussian beam, 85 
Gaussian lineshape, 170 
Gaussian Schell-model (GSM) 

beam, 188 
Gaussian function, 5 
geometrical optics, 2, 113 
grating, 98 
grating_cos, 99 
grating_sqr, 103 
 
holography, 137 
Huygens–Fresnel principle, 52 
 
ifft, 45 
ifft2, 45 

ifftshift, 36 
image quality, 147 
image_super, 160 
imagesc, 42 
impulse response, 8 
imread, 121 
incoh_image, 129 
incoherent cutoff frequency, 129, 

147 
incoherent imaging, 127 
incoherent light, 127 
iris, 115 
irradiance, 49 
 
jinc function, 57, 207 
 
leading and lagging phase, 51 
lens, 96 
lens_psfmtf, 149 
lens law, 113 
linear system, 7, 11 
linearity theorem, 4 
lineshape, 170 
linewidth, 170 
 
meshgrid, 41 
M-files, 30 
M-Lint, 83 
modulation depth, 148 
modulation transfer function, 148 
monochromatic light, 48, 170 
 
NaN, 145 
nthroot, 44 
Nyquist frequency, 15 
 
object space, 135 
optical path difference (OPD), 59, 

141 
optical path length (OPL), 50 
optical transfer function (OTF), 127, 

147 
oversampled condition, 71, 192, 197 
 
parabolic mirror, 164 
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paraxial working f/#, 115 
Parseval’s (Rayleigh’s) theorem, 4 
partial spatial coherent, 169 
partial temporal coherent, 169 
pc_spatial, 182 
pc_temp, 174 
periodic convolution, 24 
periodic extension, 21 
phase contrast imaging, 136 
phase grating, 110 
phase screen, 178, 184, 187 
phasor, 49 
plane wave, 48 
plot, 32 
point spread function (PSF), 127, 

148 
polychromatic light, 170 
power spectral density, 170 
primary aberrations, 142 
principal plane, 113 
profiler, 83 
prop2step, 204 
propFF, 80 
propIR, 65 
propTF, 63 
PSF image plane map, 157 
psf_map, 157 
pupil function,  96, 146 
 
quasi-monochromatic light, 170 
 
rand, 126 
Rayleigh resolution criterion, 135 
Rayleigh–Sommerfeld diffraction, 

51 
rect, 31, 207 
rectangle function, 5, 207 
rectangular lineshape, 187 
reducible, 186 
refractive index, 50 
rough object, 124 
 
sagittal plane, 153 
sample interval, frequency, 19 
sample interval, spatial, 13 

sample rate, 13 
sampling regimes, 73 
sampling theorem, 14 
scalar diffraction, 47 
script, 30 
Seidel polynomials, 142 
seidel_5, 144 
separable function, 3 
shift theorem, 4 
shifted arrangement, 21 
side length, 14 
similarity theorem, 4 
sinc, 38 
sinc function, 5 
single, 121 
space invariant system, 7, 11 
speckle, 126 
spherical aberration, 143 
split-step simulation, 78 
sqr_beam, 66 
Strehl ratio, 167 
successive transform theorem, 4 
sum, 84 
superposition integral, 8, 160 
support, 14 
surf, 43 
 
tangential plane, 153 
test chart, 120 
theorems, list of, 4 
thin lens, 113 
tilt, 89, 90 
transfer function, 9 
transmittance function, 89, 178 
transverse coherence length, 178 
transverse magnification, 114 
tri, 208 
triangle function, 5, 45, 208 
 
ucomb, 208 
udelta, 208 
undersampled condition, 73, 194, 

196 
uniform sampling, 20 
unit sample “comb” function, 208 
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unit sample “delta” function, 208 
unwrap, 68 
 
vignetting, 98 
visibility, 187 
 
wave optics, 2 
wavelength, 49 
wavenumber, 48 
 
xlabel, 33 
 
ZEMAX, 148 
Zernike polynomials, 142, 165 
zone plate, 109 
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